화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.534, 261-265, 2021
trans-3-Methylglutaconyl CoA isomerization-dependent protein acylation
3-methylglutaconic (3MGC) aciduria is associated with a growing number of discrete inborn errors of metabolism. Herein, an antibody-based approach to detection/quantitation of 3MGC acid has been pursued. When trans-3MGC acid conjugated keyhole limpet hemocyanin (KLH) was inoculated into rabbits a strong immune response was elicited. Western blot analysis provided evidence that immune serum, but not pre-immune serum, recognized 3MGC-conjugated bovine serum albumin (BSA). In competition ELISAs using isolated immune IgG, the limit of detection for free trans-3MGC acid was compared to that for cis-3MGC acid and four structurally related short-chain dicarboxylic acids. Surprisingly, cis-3MGC acid yielded a much lower limit of detection (similar to 0.1 mg/ml) than trans-3MGC acid (similar to 1.0 mg/ml) while all other dicarboxylic acids tested were poor competitors. The data suggest trans-3MGC- isomerized during, or after, conjugation to KLH such that the immunogen was actually comprised of KLH harboring a mixture of cis - and trans-3MGC haptens. To investigate this unexpected isomerization reaction, trans-3MGC CoA was prepared and incubated at 37 degrees C in the presence of BSA. Evidence was obtained that non-enzymatic isomerization of trans-3MGC CoA to cis-3MGC CoA precedes intramolecular catalysis to form cis-3MGC anhydride plus CoASH. Anhydride-dependent acylation of BSA generated 3MGCylated BSA, as detected by anti-3MGC immunoblot. The results presented provide an explanation for the unanticipated detection of 3MGCylated proteins in a murine model of primary 3MGC aciduria. Furthermore, non-enzymatic hydrolysis of cis-3MGC anhydride represents a potential source of cis-3MGC acid found in urine of subjects with 3MGC aciduria. (C) 2020 Elsevier Inc. All rights reserved.