화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.96, 236-242, April, 2021
Intermediates for catalytic reduction of CO2 on p-block element surfaces
E-mail:
When used as electrocatalysts for the reduction of CO2, p-block metals (e.g., Bi, Sb, Tl, Pb, In, and Sn) are known to exhibit high selectivity toward the production of formic acid (HCOOH). Nonetheless, the current knowledge on the two key intermediates, namely ㆍCOOH and ㆍOCHO, is lacking, which hinders the mechanistic understanding and development of efficient p-block metal catalysts. In this study, the molecular adsorption phenomena related to the electrocatalytic reduction of CO2 (ERC) on p-block metal surfaces are investigated using dispersion-corrected density functional theory (DFT-D) calculations. It is demonstrated that the surfaces of p-block metals display low chemical reactivity toward CO2. The adsorbates of ㆍOCHO with O-metal bonds are consistently more stable than those of ㆍCOOH with C-metal bonds. Consequently, the adsorption of ㆍOCHO is favored over ㆍCOOH adsorption, leading to the selective formation of HCOOH instead of CO. Structural, vibrational, and electronic properties of these two adsorbates are discussed to facilitate future experimental mechanistic studies.
  1. Davis SJ, Caldeira K, Matthews HD, Science, 329(5997), 1330 (2010)
  2. Rees NV, Compton RG, J. Solid State Electrochem., 15, 2095 (2011)
  3. Singh AK, Singh S, Kumar A, Catal. Sci. Technol., 6, 12 (2016)
  4. Chen C, Kotyk JFK, Sheehan SW, Chemistry, 4, 2571 (2018)
  5. Han N, Ding P, He L, Li Y, Li Y, Adv. Eng. Mater., 10, 190233 (2019)
  6. Neri G, Walsh JJ, Teobaldi G, Donaldson PM, Cowan AJ, Nat. Catal., 1, 952 (2018)
  7. Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z, Adv. Sci., 5, 170027 (2018)
  8. Qiao J, Liu Y, Hong F, Zhang J, Chem. Soc. Rev., 43, 631 (2014)
  9. Zhu DD, Liu JL, Qiao SZ, Adv. Mater., 28(18), 3423 (2016)
  10. Lee CW, Cho NH, Yang KD, Nam KT, ChemElectroChem, 4, 2130 (2017)
  11. Hori Y, Wakebe H, Tsukamoto T, Koga O, Electrochim. Acta, 39(11-12), 1833 (1994)
  12. Back S, Kim JH, Kim YT, Jung Y, Phys. Chem. Chem. Phys., 18, 9652 (2016)
  13. Detweiler ZM, White JL, Bernasek SL, Bocarsly AB, Langmuir, 30(25), 7593 (2014)
  14. Zhang S, Kang P, Meyer TJ, J. Am. Chem. Soc., 136(5), 1734 (2014)
  15. Li F, Xue M, Li J, Ma X, Chen L, Zhang X, MacFarlane DR, Zhang J, Angew. Chem.-Int. Edit., 129, 14910 (2017)
  16. Oh W, Rhee CK, Han JW, Shong B, J. Phys. Chem. C, 122, 23084 (2018)
  17. Zhang H, Ma Y, Quan F, Huang J, Jia F, Zhang L, Electrochem. Commun., 46, 63 (2014)
  18. Pander JE, Baruch MF, Bocarsly AB, ACS Catal., 6, 7824 (2016)
  19. Zu MY, Zhang L, Wang C, Zheng LR, Yang HG, J. Mater. Chem. A, 6, 16804 (2018)
  20. Lee CW, Cho NH, Im SW, Jee MS, Hwang YJ, Min BK, Nam KT, J. Mater. Chem. A, 6, 14043 (2018)
  21. Shong B, Ansari AS, Bent SF, J. Phys. Chem. C, 124, 23657 (2020)
  22. Kresse G, Furthmuller J, Phys. Rev. B, 54, 11169 (1996)
  23. Ansari AS, Chern ZY, Cai PY, Huang YW, Liao GJ, Wang JH, Luo MF, J. Chem. Phys., 151, 224707 (2019)
  24. Perdew JF, Burke K, Ernzerhof M, Phys. Rev. Lett., 77, 3865 (1996)
  25. Blochl PE, Phys. Rev. B, 50, 17953 (1994)
  26. Grimme S, J. Comput. Chem., 27, 1787 (2006)
  27. Raya SS, Ansari AS, Shong B, Nanomaterials, 10, 1215 (2020)
  28. Blochl PE, Jepsen O, Andersen OK, Phys. Rev. B, 49, 16223 (1994)
  29. Ansari AS, Raya SS, Shong B, J. Phys. Chem. C, 124, 17121 (2020)
  30. Cramer CJ, Essentials of Computational Chemistry: Theories and Models, 2nd ed., Wiley, 2004.
  31. Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen JR, Chorkendorff I, Sehested J, Norskov JK, J. Catal., 259(1), 147 (2008)
  32. Hori Y, Modern Aspects of Electrochemistry, Springer, New York, NY, pp.89 2008.
  33. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK, Energy Environ. Sci., 3, 1311 (2010)
  34. Henkelman G, Arnaldsson A, Jonsson H, Comput. Mater. Sci., 36, 354 (2006)
  35. Glockler G, J. Phys. Chem., 62, 1049 (1958)
  36. Hofmann P, Prog. Surf. Sci., 81, 191 (2006)
  37. Schulze G, Franke KJ, Pascual JI, Phys. Rev. Lett., 109
  38. Ossinger S, Naggert H, Kipgen L, Jasper-Toennies T, et al., J. Phys. Chem. C, 121, 1210 (2017)
  39. Innocent B, Liaigre D, Pasquier D, Ropital F, Leger JM, Kokoh KB, J. Appl. Electrochem., 39, 227 (2008)
  40. Yoo JS, Christensen R, Vegge T, Norskov JV, Studt F, ChemSusChem, 9, 358 (2016)
  41. Feaster JT, Shi C, Cave ER, Hatsukade T, Abram DN, Kuhl KP, Hahn C, Nørskov JK, Jaramillo TF, ACS Catal., 7, 4822 (2017)
  42. Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J, ChemphysChem, 18, 3266 (2017)
  43. Shubina TE, Hartnig C, Koper MTM, Phys. Chem. Chem. Phys., 6, 4215 (2004)
  44. Calatayud M, Collins SE, Baltanas MA, Bonivardi AL, Phys. Chem. Chem. Phys., 11, 1397 (2009)
  45. Sheng H, Oh MH, Osowiecki WT, Kim W, Alivisatos AP, Frei H, J. Am. Chem. Soc., 140(12), 4363 (2018)
  46. Yang H, Hu YW, Chen JJ, Balogun MS, Fang PP, Zhang SQ, Chen J, Tong YX, Adv. Eng. Mater., 9, 190139 (2019)
  47. Tian ZQ, Priest C, Chen L, Adv. Theor. Simul., 1, 180000 (2018)
  48. Atifi A, Boyce DW, DiMeglio JL, Rosenthal J, ACS Catal., 8, 2857 (2018)
  49. Koh JH, Won DH, Eom T, Kim NK, Jung KD, Kim H, Hwang YJ, Min BK, ACS Catal., 7, 5071 (2017)
  50. Han N, Wang Y, Yang H, Deng J, Wu J, Li Y, Li Y, Nat. Commun., 9, 1320 (2018)
  51. Wen GB, Lee DU, Ren BH, Hassan FM, Jiang GP, Cano ZP, Gostick J, Croiset E, Bai ZY, Yang L, Chen ZW, Adv. Eng. Mater., 8, 180242 (2018)
  52. Jee MS, Kim H, Jeon HS, Chae KH, Cho J, Min BK, Hwang YJ, Catal. Today, 288, 48 (2017)
  53. Liu C, Lourenco MP, Hedstrom S, Cavalca F, Diaz-Morales O, Duarte HA, Nilsson A, Pettersson LGM, J. Phys. Chem. C, 121, 25010 (2017)