화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.96, 226-235, April, 2021
Ferric methanesulfonate as an effective and environmentally sustainable lixiviant for Zn extraction from sphalerite (ZnS)
E-mail:
Zinc is currently extracted from sphalerite (ZnS) by either sintering-smelting or roasting-leaching. These high-temperature processes produce environmentally hazardous sulfur dioxide gas. Hence, sustainable zinc extraction calls for direct leaching at low temperatures. Here, we show that ferric methanesulfonate is a high performing lixiviant for this purpose. Using 0.8 M ferric methanesulfonate, 99.3% Zn was extracted from 106-150 mm sphalerite particles after leaching at 70 °C for 96 h. Elemental sulfur, rather than sulfur dioxide, was produced as a by-product. When compared to common inorganic lixiviants such as ferric sulfate or ferric chloride, ferric methanesulfonate demonstrates greater extraction efficiency and is less corrosive, less toxic, and does not release harmful gases. Mineralogical, microscopical, and compositional characterization of reaction products confirmed the formation of a core.shell structure consisting of a sphalerite core and a sulfur shell, and the manifestation of a coupled dissolutionreprecipitation mineral replacement mechanism. Efficient zinc extraction was facilitated by the interconnected pores in sulfur, which provided pathways for mass transfer between the lixiviant and sphalerite core. The precipitation of anglesite (PbSO4), which in some instances caused surface passivation through the infilling of sulfur shells, suggests that Pb2+ concentration should be controlled when applying ferric methanesulfonate for Zn extraction.
  1. Xing P, Wang C, Zeng L, Ma B, Wang L, Chen Y, Yang C, ACS Sustain. Chem. Eng., 7, 9498 (2019)
  2. Palden T, Onghena B, Regadio M, Binnemans K, Green Chem., 21, 5394 (2019)
  3. Palden T, Regadio M, Onghena B, Binnemans K, ACS Sustain. Chem. Eng., 7, 4239 (2019)
  4. Nikkhou D, Xia F, Knorsch M, Deditius AP, ACS Sustain. Chem. Eng., 8, 14407 (2020)
  5. Sohn H, Olivas-Martinez M, Lead and Zinc Production, Elsevier, pp.671 2014.
  6. Owusu G, Dreisinger DB, Peters E, Hydrometallurgy, 38, 315 (1995)
  7. Sahu S, Sahu K, Pandey B, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 37, 541 (2006)
  8. Nikkhou F, Xia F, Deditius AP, Hydrometallurgy, 188, 201 (2019)
  9. Picazo-Rodriguez NG, Soria-Aguilar M, Martinez-Luevanos A, Almaguer-Guzman I, Chaidez-Felix J, Carrillo-Pedroza FR, Minerals, 10, 1 (2020)
  10. Dutrizac J, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 37, 161 (2006)
  11. Karimi S, Rashchi F, Moghaddam J, Int. J. Miner. Process., 162, 58 (2017)
  12. Aydogan S, Aras A, Canbazoglu M, Chem. Eng. J., 114(1-3), 67 (2005)
  13. Adebayo A, Ipinmoroti K, Ajayi O, Miner J, Mat. Character Eng., 5, 167 (2006)
  14. Copur M, Chem. Biochem. Eng. Q., 15, 181 (2001)
  15. Estrada-de los Santos F, Rivera-Santillan R, Talavera-Ortega M, Bautista F, Hydrometallurgy, 163, 167 (2016)
  16. Solomon MM, Gerengi H, Kaya T, Umoren SA, ACS Sustain. Chem. Eng., 5, 809 (2017)
  17. Chong AL, Mardel JI, MacFarlane DR, Forsyth M, Somers AE, ACS Sustain. Chem. Eng., 4, 1746 (2016)
  18. Lochmann J, Pedlik M, Hydrometallurgy, 37, 89 (1995)
  19. Patai S, Chemistry of Sulphinic Acids, Esters and their Derivatives, Wiley, 1990.
  20. Gernon M, Wu M, Buszta T, Janney P, Green Chem., 1, 127 (1999)
  21. Laboratories IS, An acute oral toxicity study in rats with 70% methane sulfonic acid, SLI Study No. 3255.
  22. Feng Q, Wen S, Zhao W, Bai X, Chen Y, Russ. J. Non-Ferric Metals, 56, 365 (2015)
  23. Feng Q, Wen S, Zhao W, Lv C, Bai X, Solvent Extr. Res. Dev., 22, 159 (2015)
  24. Zhang Q, Wen S, Feng Q, Nie W, Wu D, Physicochem. Probl. Miner. Process., 55, 1 (2019)
  25. Hidalgo T, Kuhar L, Beinlich A, Putnis A, Mineral. Eng., 125, 66 (2018)
  26. Hidalgo T, Kuhar L, Beinlich A, Putnis A, Hydrometallurgy, 188, 140 (2019)
  27. Ahn J, Wu J, Lee J, Hydrometallurgy, 187, 54 (2019)
  28. Wu Z, Dreisinger DB, Urch H, Fassbender S, Hydrometallurgy, 142, 121 (2014)
  29. Wu Z, Master Thesis, University of British Columbia, Vancouver, Canada, 2012.
  30. Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini-Eidukat B, Melcher F, Geochim. Cosmochim. Acta, 73, 4761 (2009)
  31. Deng JS, Lai H, Chen M, Glen M, Wen SM, Zhao B, Liu ZL, Yang H, Liu MS, Huang LY, Guan SL, Wang P, Miner. Eng., 136, 168 (2019)
  32. Akcil A, Ciftci H, Int. J. Miner. Process., 71(1-4), 233 (2003)
  33. Zarate-Gutierrez R, Lapidus G, Morales R, Hydrometallurgy, 104, 8 (2010)
  34. Zarate-Gutierrez R, Gregorio-Vazquez L, Lapidus G, Can. Metall. Q., 54, 305 (2015)
  35. Knauss KG, Wolery TJ, Geochim. Cosmochim. Acta, 52, 43 (1988)
  36. Weisener CG, Smart RSC, Gerson AR, Int. J. Miner. Process., 74(1-4), 239 (2004)
  37. Ghosh MK, Das RP, Biswas AK, Int. J. Miner. Process., 66(1-4), 241 (2002)
  38. Tian L, Yu X, Gong A, Wu X, Zhang T, Liu Y, Xu Z, Can. Metall. Q., 59, 1 (2020)
  39. Majima H, Awakura Y, Misaki N, Metall. Trans. B, 12, 645 (1981)
  40. Crundwell FK, J. Phys. Chem. C, 124, 15347 (2020)
  41. Crundwell F, Hydrometallurgy, 21, 155 (1988)
  42. Crundwell F, Hydrometallurgy, 19, 227 (1987)
  43. Keys JD, Horwood J, Baleshta T, Cabri L, Harris D, Can. Mineral., 9, 453 (1968)
  44. Santos SM, Machado RM, Correia MJN, Reis MTA, Ismael MRC, Carvalho JM, Miner. Eng., 23, 606 (2010)
  45. Zhao L, Deng J, Xu Y, Zhang C, Arab. J. Geosci., 11, 1 (2018)
  46. Zhou Y, Li G, Xu L, Liu J, Sun Z, Shi W, Hydrometallurgy, 191, 105209 (2020)
  47. Sinclair L, Thompson J, Hydrometallurgy, 157, 306 (2015)
  48. Al-Harahsheh M, Kingman S, Chem. Eng. Process.: Process Intensif., 46, 883 (2007)
  49. Crundwell F, Verbaan B, Hydrometallurgy, 17, 369 (1987)
  50. Crundwell FK, Master Thesis, University of the Witwatersrand, Johannesburg, South Africa, 1985.
  51. Hulbert S, J. Br. Ceram. Soc., 6, 11 (1969)
  52. Putnis A, An Introduction to Mineral Sciences, Cambridge University Press, 1992.
  53. Yao X, Xia F, Deditius AP, Brugger J, Etschmann BE, Pearce MA, Pring A, Contrib. Mineral. Petrol., 175, 1 (2020)
  54. Putnis A, Rev. Miner. Geochem., 70, 87 (2009)
  55. Putnis A, Rev. Mineral. Geochem., 80, 1 (2015)
  56. Xia F, Zhao J, Etschmann BE, Brugger J, Garvey CJ, Rehm C, Lemmel H, Ilavsky J, Han YS, Pring A, Am. Mineral., 99, 2398 (2014)
  57. Altree-Williams A, Pring A, Ngothai Y, Brugger J, Earth-Sci. Rev., 150, 628 (2015)
  58. Xia F, Brugger J, Chen G, Ngothai Y, O’Neill B, Putnis A, Pring A, Geochim. Cosmochim. Acta, 73, 1945 (2009)
  59. Ruiz-Agudo E, King HE, Patino-Lopez LD, Putnis CV, Geisler T, Rodriguez-Navarro C, Putnis A, Geology, 44, 567 (2016)
  60. Xia F, Brugger J, Ngothai Y, O’Neill B, Chen G, Pring A, Cryst. Growth Des., 9, 4902 (2009)
  61. Qian G, Xia F, Brugger J, Skinner WM, Bei J, Chen G, Pring A, Am. Mineral., 96, 1878 (2011)
  62. Kartal M, Xia F, Ralph D, Rickard WD, Renard F, Li W, Hydrometallurgy, 191, 1 (2019)
  63. Nikkhou F, Xia F, Deditius AP, Yao X, Hydrometallurgy, 197, 105468 (2020)
  64. Zhao J, Brugger J, Xia F, Ngothai Y, Chen G, Pring A, Am. Mineral., 98, 19 (2013)
  65. Xing Y, Etschmann B, Liu W, Mei Y, Shvarov Y, Testemale D, Tomkins A, Brugger J, Chem. Geol., 504, 158 (2019)
  66. Kang Q, Chen L, Valocchi AJ, Viswanathan HS, J. Hydrol., 517, 1049 (2014)
  67. Raufaste C, Jamtveit B, John T, Meakin P, Dysthe DK, R. Soc, A: Proc. Math. Phys. Eng. Sci. 467, 1408 (2011).
  68. Putnis CV, Tsukamoto K, Nishimura Y, Am. Mineral., 90, 1909 (2005)
  69. Beaudoin N, Hamilton A, Koehn D, Shipton ZK, Kelka U, Geochim. Cosmochim. Acta, 232, 163 (2018)