화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.95, 51-56, March, 2021
Biodegradability Evaluation of Hydroxyethylcellulose-based Microcapsules by 1H Nuclear Magnetic Resonance Spectroscopy
E-mail:
This study introduces a robust synthetic method of fabricating co-assembled biodegradable micro-capsules composed mainly of representative natural sugar polymers, hydroxyethylcellulose (HEC), alginate, and sorbitol. We propose a facile enzymatic method evaluating initial biodegradation processes of the microcapsules utilizing a linewidth analysis on 1H nuclear magnetic resonance (NMR) spectroscopy. Linewidth analysis on the 1H resonance signals represents that broad resonance signals of the sugar-based microcapsules are changed to relatively narrower signals as an association of cellulase enzyme. This phenomenon explains co-assembled and cross-linked microcapsule structures are destroyed or/and loosened by the enzymatic breakdowns of ester bonds in the microcapsules. Moreover, closer inspection indicates that co-assembled sorbitol molecules are released from the main networked microcapsules, additionally supporting the biodegradation properties of the microcapsules. Considering the unique features of this method, the proposed study provides valuable information about the initial biodegradation processes and mechanisms of various microcapsules.
  1. Bah MG, Bilal HM, J. Wang, Soft Matter, (16), 570 (2020).
  2. Ham YR, Lee DH, Kim SH, Shin YJ, Yang M, Shin JS, J. Ind. Eng. Chem., 25(16), 728 (2010)
  3. Mundargi RC,Tan EL, Seo J, Cho NJ, J. Ind. Eng. Chem., 36, 102 (2016)
  4. Paulraj T, Wennmalm S, Riazanova AV, Wu Q, Crespo GA, Svagan AJ, ACS Appl. Mater. Interfaces., 48(10), 41146 (2018)
  5. Ugolini A, Ungherese G, Ciofini M, Lapucci A, Camaiti M, Estuarine Coastal Shelf Sci., 129, 19 (2013)
  6. Tosin M, Weber M, Siotto M, Lott C, Innocenti FD, Front. Microbiol., 3(20) (2012)
  7. Markiewicz M, Maszkowska J, Nardello-Rataj V, Stolte S, RSC Adv., 6, 87325 (2016)
  8. Brillet F, Cregut M, Durand MJ, Sweetlove C, Cheneble JC, L’Haridon J, Thouand G, Green Chem., 90(5), 1031 (2018)
  9. Reuschenbach U, Pagga US, Water Res., 37(7), 1571 (2003)
  10. Park J, Ye M, Park K, Molecules, 1(10), 146 (2005)
  11. Xue W, Zhang M, Zhao F, Wang F, Gao J, Wang L, E-Polymers, 1(19), 268 (2019)
  12. Musyanovych A, Landfester K, Macromol. Biosci., 14(4), 458 (2014)
  13. Zhang H, Tung WY, Li X, Jin H, Deng R, Chen YM, Mao Y, Zhu Y, Polymer, 203, 122787 (2020)
  14. Coelho A, Fonseca IM, Matos I, Marques MM, do Rego AMB, Lemos MANDA, Lemos F, Appl. Catal., 274(1), 170 (2010)
  15. Habibu S, Sarih NM, Sairi NA, Zulkifli M, R. Soc. Open Sci, 6(11), 190869 (2019)
  16. Abrusci C, Pablos JL, Corrales T, Lopez-Marin J, Marin I, Catalina F, Int. Biodeterior. Biodegrad., 65(3), 451 (2011)
  17. Boulos S, Nystrom L, Analyst, 141(24), 6533 (2016)
  18. Keles H, Naylor A, Clegg F, Sammon C, Analyst, 139, 2355 (2014)
  19. Rivas MV, Petroselli G, Erra-Balsells R, Varela O, Kolender AA, RSC Adv., 9, 9860 (2019)
  20. Gajendiran A, Krishnamoorthy S, Abraham J, 3 Biotech, 6(1), 52 (2016)
  21. Pena B, de Menorval LC, Garcia-Valls R, Gumi T, ACS Appl. Mater. Interfaces, 3(11), 4420 (2011)
  22. Chen R, Yi C, Wu H, Guo S, Carbohydr. Polym., 2(81), 188 (2010)
  23. Matulova M, Nouaille R, Capek P, Pean M, Delort AM, Forano E, FEBS J., (275), 3503 (2008).
  24. Jeong E, Lee G, Han SW, Lee WJ, Choi HS, Lee Y, Kim JW, J. Ind. Eng. Chem., 46, 192 (2017)
  25. Shin K, Gong G, Cuadrado J, Jeon S, Seo M, Choi HS, Hwang JS, Lee Y, Fernandez-Nieves A, Kim JW, Chem. Eur. J., 23(18), 4292 (2017)
  26. Kosaka A, Aida M, Katsumoto Y, J. Mol. Struct., 1093, 195 (2015)
  27. Meier MAR, Aerts SNH, Staal BBP, Rasa M, Schubert US, Macromol. Rapid Commun., 26(24), 1918 (2005)
  28. Prosser RS, Evanics F, Kitevski JL, Al-Abdul-Wahid MS, J. Biochem., 45(28), 8453 (2006)
  29. Hajimu IT, Mitsuharu T, Jpn. J. Food. Safety., 3(2), 145 (1996)