화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.94, 425-434, February, 2021
Phenomenological approaches for quantitative temperature-programmed reduction (TPR) and desorption (TPD) analysis
E-mail:
Temperature-programmed reduction (TPR) and temperature-programmed desorption (TPD) are techniques widely used for catalyst characterization, providing information about active sites. However, results from these experiments are usually interpreted with the aid of empirical models, based on the representation of reduction or desorption profiles as summations of empirical reference curves. In this context, phenomenological approaches can present several advantages over this traditional empirical approach, as in this case the extracted information can be based on theoretical models that allows for a deeper understanding of the catalyst properties. For this reason, in the present work, empirical and phenomenological modelling approaches are evaluated for the quantitative analysis of H2-TPR and NH3-TPD profiles, obtained from the characterization of Ni/SiO2 and Al2O3 alumina catalysts, respectively, and results from both approaches are thoroughly compared and discussed for the first time. Our results, obtained from the fitting of both modelling approaches to the whole experimental profile by using nonlinear regression, indicate that the phenomenological modelling approach can be considered better and should therefore be preferred, as it allows for significantly more accurate quantification and correct discrimination of distinct active sites, in addition to simultaneously enabling the determination of reduction or desorption kinetics parameters.
  1. Chorkendorff JW, Niemantsverdriet I, Concepts of Modern Catalysis and Kinetics, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003.
  2. Phung TK, Garbarino G, J. Ind. Eng. Chem., 47, 288 (2017)
  3. Lever T, Haines P, Rouquerol J, Charsley EL, Van Eckeren P, Burlett DJ, Pure Appl. Chem., 86(4), 545 (2014)
  4. Da Ros S, Braido RS, de Souza e Castro NL, Brandao ALT, Schwaab M, Pinto JC, J. Anal. Appl. Pyrolysis, 144, 104706 (2019)
  5. Da Ros S, Jones MD, Mattia D, Pinto JC, Schwaab M, Noronha FB, Kondrat SA, Clarke TC, Taylor SH, ChemCatChem, 8(14), 2376 (2016)
  6. Da Ros S, Barbosa-Coutinho E, Schwaab M, Calsavara V, Fernandes-Machado NRC, Mater. Charact., 80, 50 (2013)
  7. Da Ros S, Jones MD, Mattia D, Schwaab M, Barbosa-Coutinho E, Rabelo-Neto RC, Noronha FB, Pinto JC, Chem. Eng. J., 308, 988 (2017)
  8. Santamaria L, Lopez G, Arregi A, Artetxe M, amutio M, Buibao J, Olazar, J. Ind. Eng. Chem., 91, 167 (2020)
  9. Kechagiopoulos PN, Thybaut JW, Marin GB, Ind. Eng. Chem. Res., 53(5), 1825 (2014)
  10. Bhatia S, Beltramini J, Do DD, Catal. Today, 7(3), 309 (1990)
  11. Lopez JM, Gilbank AL, Garcia T, Solsona B, Agouram S, Torrente-Murciano L, Appl. Catal. B: Environ., 174-175, 403 (2015)
  12. Kanervo JM, Krause AOI, J. Phys. Chem. B, 105(40), 9778 (2001)
  13. Bhering DL, Nele M, Pinto JC, Salim VMM, Appl. Catal. A: Gen., 234(1-2), 55 (2002)
  14. Heidebrecht P, Galvita V, Sundmacher K, Chem. Eng. Sci., 63(19), 4776 (2008)
  15. Russell NM, Ekerdt JG, Surf. Sci., 364(2), 199 (1996)
  16. Kanervo JM, Reinikainen KM, Krause AOI, Appl. Catal. A: Gen., 258(2), 135 (2004)
  17. Kanervo JM, Krause AOI, Aittamaa JR, Hagelberg PH, Lipiainen KJT, Eilos IH, Hiltunen JS, Niemi VM, Chem. Eng. Sci., 56(4), 1221 (2001)
  18. Xian XC, Ran C, Nai CL, Yang P, Zhao S, Dong LC, Appl. Catal. A: Gen., 547, 37 (2017)
  19. Niwa M, Katada N, Okumura K, Solid acidity, shape selectivity and loading properties, Vol. 141, Springer, London, New York, 2010.
  20. Al-Dughaither AS, de Lasa H, Ind. Eng. Chem. Res., 53(40), 15303 (2014)
  21. Rodriguez-Gonzalez L, Hermes F, Bertmer M, Rodriguez-Castellon E, Jimenez-Lopez A, Simon U, Appl. Catal. A: Gen., 328(2), 174 (2007)
  22. Cvetanovic RJ, Amenomiya Y, Adv. Catal., 17, 103 (1967)
  23. Press WH, Flannery BP, Teukolsky SA, Vetterling WT, The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, New York, 1992.
  24. Calo JMHPJ, Fundamental Issues in Controlof Carbon Gasification Reactivity, Kluwer Academic Publishers, Dordrecht, pp.329 1991.
  25. Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC, Yuan WK, Carbon N. Y., 45(4), 785 (2007)
  26. Tanksale A, Beltramini JN, Dumesic JA, Lu GQ, J. Catal., 258(2), 366 (2008)
  27. Hoang DL, Dang TTH, Engeldinger J, Schneider M, Radnik J, Richter M, Martin A, J. Solid State Chem., 184(8), 1915 (2011)
  28. Carvalho CL, De Avillez RR, Rodrigues MT, Borges LEP, Appel LG, Appl. Catal. A: Gen., 415-416, 96 (2012)
  29. Bahmani M, Farahani BV, Sahebdelfar S, Appl. Catal. A: Gen., 520, 178 (2016)
  30. Tian YP, Liu XM, Rood MJ, Yan ZF, Appl. Catal. A: Gen., 545, 1 (2017)
  31. Kanervo JM, Keskitalo TJ, Shoor RI, Krause AOI, J. Catal., 238(2), 382 (2006)
  32. Kanervo JM, Kouva S, Kanervo KJ, Kolvenbach R, Jentys A, Lercher JA, Chem. Eng. Sci., 137, 807 (2015)
  33. Monti DAM, Baiker A, J. Catal., 83(2), 323 (1983)
  34. Ehrhardt K, Richter M, Roost U, Ohlmann G, Appl. Catal., 17, 23 (1985)
  35. Schittkowski J, Buesen D, Toelle K, Muhler M, Catal. Lett., 146(5), 1011 (2016)
  36. Du D, Kullgren J, Kocmaruk B, Hermansson K, Broqvist P, J. Catal., 384, 252 (2020)
  37. Gambu T, Abrahams R, van Steen E, Catalysts, 9(4), 310 (2019)
  38. Bornes C, Amelse JA, Peacock M, Marshall CL, Schwartz MM, Geraldes CFGC, Rocha J, Mafra L, Eur. J. Inorg. Chem., 2020(19), 1860 (2020)
  39. Kissinger HE, Res J, Natl. Bur. Stand. (1934) 57 (4), 217 (1956).
  40. Kissinger HE, Anal. Chem., 29(11), 1702 (1957)
  41. Jankovic B, Adnadevic B, Mentus S, Chem. Eng. Sci., 63(3), 567 (2008)
  42. Redhead PA, Vacuum, 12, 203 (1962)
  43. Silva DL, Federal University of Rio de Janeiro, 1999.
  44. Nele M, Vidal A, Bhering DL, Pinto JC, Salim VMM, Appl. Catal. A: Gen., 178(2), 177 (1999)
  45. Da Ros S, Producao de eteno a partir de etanol utilizando aluminas, Federal University of Santa Maria, 2012.
  46. Pitha J, Jones RN, Can. J. Chem., 44, 3031 (1966)
  47. Schwaab M, Pinto JC, Chem. Eng. Sci., 62(10), 2750 (2007)
  48. Schwaab M, Lemos LP, Pinto JC, Chem. Eng. Sci., 63(11), 2895 (2008)
  49. Watts DG, Can. J. Chem. Eng., 72(4), 701 (1994)
  50. Box GEP, Ann. N. Y. Acad. Sci., 86(3), 792 (1960)
  51. Petzold LR, IMACA World Congress, Montreal, pp.1 1982.
  52. Schwaab M, Biscaia EC, Monteiro JL, Pinto JC, Chem. Eng. Sci., 63(6), 1542 (2008)
  53. Schwaab M, Alberton AL, Pinto JC, ESTIMA&PLANEJA, Rio de Janeiro, 2010.
  54. Kennedy J, Eberhart R, Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 4, IEEE, pp.1942 1995.
  55. Schwaab M, Pinto JC, Analise de Dados Experimentais I, Rio de Janeiro, 2007.
  56. Da Ros S, Schwaab M, Pinto JC, Ref. Modul. Chem. Mol. Sci. Chem. Eng. (2017),
  57. Box GEP, Hunter JS, Hunter WG, Statistics for Experimenters. Design, John Wiley & Sons, New Jersey, 2005.
  58. Pompeo F, Nichio NN, Gonzalez MG, Montes M, Catal. Today, 107-108, 856 (2005)
  59. Jozwiak WK, Nowosielska M, Rynkowski J, Appl. Catal. A: Gen., 280(2), 233 (2005)
  60. Bandrowski J, Bickling CR, Yang KH, Hougen OA, Chem. Eng. Sci., 17(5), 379 (1962)
  61. Benton AF, Emmett PH, J. Am. Chem. Soc., 46(12), 2728 (1924)
  62. Maxted EB, Hassid NJ, Trans. Faraday Soc., 28, 253 (1932)
  63. Martins L, Cardoso D, Hammer P, Garetto T, Pulcinelli SH, Santilli CV, Appl. Catal. A: Gen., 398(1-2), 59 (2011)
  64. Shi Y, Li X, Rong X, Gu B, Wei H, Zhao Y, Wang W, Sun C, Catal. Letters, 0123456789 (2020).