화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.93, 423-429, January, 2021
Impact of low temperature plasma annealing for flexible, transparent and conductive ITO/PEDOT:PSS composite electrode
E-mail:
We report on the development of a cost effective, highly transparent flexible conductive electrode for energy conversion devices using the ITO/PEDOT:PSS nanocomposite. The ITO/PEDOT:PSS nano composite thin film was deposited via bar coating, then its characteristics were examined. In particular, we study any changes in its transparency and resistance. The thin film transparent ITO/PEDOT:PSS was annealed using a low temperature annealing technique called plasma annealing. The purpose of low temperature plasma annealing is to help excite the electrons from their bonding states in the valence band into the antibonding states of the conduction band where a second order phase transition occurs. This study investigates the influence of O2 plasma annealing on the resistance of the nano composite thin films. The included PEDOT:PSS supports the flexibility of the ITO, as pristine ITO is brittle. High optical transmittance of 93.73% at 550 nm and a reduction in the sheet resistance were achieved using this plasma annealing from 1105 Ω/□ to 535 Ω/□ on the ITO/PEDOT:PSS nano composite making them excellent candidates to develop as cost effective flexible transparent electrodes that can be used as thin film heaters.
  1. Ellmer K, Nat. Photonics, 6(12), 809 (2012)
  2. Park JS, Kim H, Kim ID, J. Electroceramics, 32(2-3), 117 (2014)
  3. Noh YJ, Kim JG, Kim SS, Kim HK, Na SI, J. Power Sources, 437, 226894 (2019)
  4. Gaspera ED, Peng Y, Hou Q, Spiccia L, Bach U, Jasieniak JJ, Cheng YB, Nano Energy, 13, 249 (2015)
  5. Aharon S, Layani M, El Cohen B, Shukrun E, Magdassi S, Etgar L, Adv. Mater. Interfaces, 2(12), 1 (2015)
  6. Chen B, Bai Y, Yu Z, Li T, Zheng X, Dong Q, Shen L, Boccard M, Gruverman A, Holman Z, Huang J, Adv. Energy Mater., 6(19), 1 (2016)
  7. Guo Y, Shoyama K, Sato W, Nakamura E, Adv. Eng. Mater., 6(6), 1 (2016)
  8. Jung JW, Chueh CC, Jen AKY, Adv. Eng. Mater., 5(17), 1 (2015)
  9. Dai X, Zhang Y, Shen H, Luo Q, Zhao X, Li J, Lin H, ACS Appl. Mater. Interfaces, 8(7), 4523 (2016)
  10. Guo F, Azimi H, Hou Y, Przybilla T, Hu M, Bronnbauer C, Langner S, Spiecker E, Forberich K, Brabec CJ, Nanoscale, 7(5), 1642 (2015)
  11. Zhang Y, Wu Z, Li P, Ono LK, Qi Y, Zhou J, Shen H, Surya C, Zheng Z, Adv. Energy Mater., 8(1), 1 (2018)
  12. Bu L. Liu Z, Zhang M, Li W, Zhu A, Cai F, Zhao Z, Zhou Y, ACS Appl. Mater. Interfaces, 7(32), 17776 (2015)
  13. Zhao J, Brinkmann KO, Hu T, Pourdavoud N, Becker T, Gahlmann T, Heiderhoff T, Polywka A, Gorrn P, Chen Y, Cheng B, Riedl T, Adv. Eng. Mater., 7(14) (2017)
  14. Werner J, Dubuis G, Walter A, Loper P, Moon SJ, Nicolay S, Morales-Masis M, De Wolf S, Niesen B, Ballif C, Sol. Energy Mater. Sol. Cells, 141, 407 (2015)
  15. Chang CY, Lee KT, Huang WK, Siao HY, Chang YC, Chem. Mater., 27(14), 5122 (2015)
  16. Heo JH, Han HJ, Lee M, Song M, Kim DH, Im SH, Energy Environ. Sci., 8(10), 2922 (2015)
  17. Heo JH, Jang MH, Lee MH, Han HJ, Kang MG, Lee ML, Im SH, J. Mater. Chem. A, 4(42), 16324 (2016)
  18. Lin HK, Hsu WC, Appl. Surf. Sci., 308, 58 (2014)
  19. Choi KH, Kim J, Noh YJ, Na SI, Kim HK, Sol. Energy Mater. Sol. Cells, 110, 147 (2013)
  20. Dattoli EN, Lu W, MRS Bull., 36(10), 782 (2011)
  21. Gordon RG, (August 2000) 52 (2020).
  22. Yun J, Park YH, Bae TS, Lee S, Lee GH, ACS Appl. Mater. Interfaces, 5(1), 164 (2013)
  23. Zhang X, Liu X, Zhang Y, Bao R, Peng D, Li T, Gao G, Guo W, Pan C, J. Mater. Chem. C, 4(34), 8130 (2016)
  24. Cairns DR, Witte RP, Sparacin DK, Sachsman SM, Paine DC, Crawford GP, Newton RR, Appl. Phys. Lett., 76(11), 1425 (2000)
  25. Park SK, Han JI, Moon DG, Kim WJ, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., 42 (2 A), 623 (2003).
  26. Yu JS, Kim I, Kim JS, Jo J, Larsen-Olsen TT, Søndergaard RR, Hosel M, Angmo D, Jørgensen M, Krebs FC, Nanoscale, 4(19), 6032 (2012)
  27. Tseng YT, Lin YC, Shih CC, Hsieh HC, Lee WY, Chiu YC, Chen WC, J. Mater. Chem. C, 1 (2020).
  28. Yang C, Gu HW, Lin W, Yuen MM, Wong CP, Xiong MY, Gao B, Adv. Mater., 23(27), 3052 (2011)
  29. Lee MS, Lee K, Kim SY, Lee H, Park J, Choi KH, Kim HK, Kim DG, Lee DY, Nam S, Park JU, Nano Lett., 13(6), 2814 (2013)
  30. Scardaci V, Coull R, Lyons PE, Rickard D, Coleman JN, Small, 7(18), 2621 (2011)
  31. Lee JY, Connor ST, Cui Y, Peumans P, Nano Lett., 8(2), 689 (2008)
  32. Liang L, Li L, Niu X, Yu Z, Pei Q, Nat. Photonics, 7(10), 817 (2013)
  33. Kang H, Kee S, Yu K, Lee J, Kim G, Kim J, Kim JR, Kong J, Lee K, Adv. Mater., 27(8), 1408 (2015)
  34. Blum M, Hopper N, Langford J, Biham E, Blum M, Langford J, Larson K, et al., September, 1468 (2008).
  35. Song J, Li J, Xu J, Zeng H, Nano Lett., 14(11), 6298 (2014)
  36. Espinosa N, Hosel M, Angmo D, Krebs FC, Energy Environ. Sci., 5(1), 5117 (2012)
  37. Burke DJ, Lipomi DJ, Energy Environ. Sci., 6(7), 2053 (2013)
  38. Manceau M, Angmo D, Jørgensen M, Krebs FC, Org. Electron., 12(4), 566 (2011)
  39. Li P, Sun K, Ouyang J, ACS Appl. Mater. Interfaces, 7(33), 18415 (2015)
  40. Alemu D, Wei HY, Ho KC, Chu CW, Energy Environ. Sci., 5(11), 9662 (2012)
  41. Xu B, Gopalan SA, Gopalan AI, Muthuchamy N, et al., Sci. Rep., 7, 1 (2017)
  42. Wang D, Wang J, Li LL, An QS, Huang H, Jiao CQ, Liu Y, Zhang FJ, Int. J. Photoenergy, 2014 (2014)
  43. Xu H, Yan gLY, Tian H, Yin SG, Zhang FL, Optoelectron. Lett., 6(3), 176 (2010)
  44. Lim K, Jung S, Kim JK, Kang JW, Kim JH, Choa SH, Kim DG, Sol. Energy Mater. Sol. Cells, 115, 71 (2013)
  45. Wakagi M, Chahara K, Onisawa K, Kawakubo Y, Kichikawa T, Satoh T, Minemura T, Thin Solid Films, 411(1), 46 (2002)
  46. Friedel B, Keivanidis PE, Brenner TJK, Abrusci A, McNeill CR, Friend RH, Greenham NC, Macromolecules, 42(17), 6741 (2009)
  47. Thomas M, Mittal KL, Atmos. Press. Plasma Treat. Polym. Relev. to Adhes, (2013).
  48. Martin RM, Phys. Rev., 186(3), 871 (1969)
  49. Tsu R, Hodgson RT, Tan TY, Baglin JE, Phys. Rev. Lett., 42(20), 1356 (1979)
  50. Liu RTHPL, Yen R, N. Bloembergen, 864(August), 1 (2008).
  51. Van Vechten JA, Tsu R, Saris FW, Phys. Lett. A, 74(6), 422 (1979)
  52. Lee CT, Yu QX, Tang BT, Lee HY, Thin Solid Films, 386(1), 105 (2001)
  53. Klein E, Huber K, Paul O, Ruther P, Thin Solid Films, 693, 137715 (2020)
  54. Song PK, Akao H, Kamei M, Shigesato Y, Yasui I, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., 38 (9 A), 5224 (1999).
  55. Kim KY, Park SB, Mater. Chem. Phys., 86(1), 210 (2004)
  56. Liu JM, Yen R, Kurz H, Bloembergen N, Appl. Phys. Lett., 39(9), 755 (1981)
  57. Heine V, Van Vechten JA, Phys. Rev. B, 13(4), 1622 (1976)
  58. Kern R, Cryst. Res. Technol., 48(10), 727 (2013)
  59. Hwang J, Amy F, Kahn A, Org. Electron., 7(5), 387 (2006)
  60. Vitoratos E, Sakkopoulos S, Dalas E, Paliatsas N, Karageorgopoulos D, Petraki F, Kennou S, Choulis SA, Org. Electron., 10(1), 61 (2009)