화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.1, 50-55, January, 2021
냉각시스템을 위한 Polyurethane/Poly(N-isopropylacrylamide) 복합체의 결정화 기반 제조
Crystallization-based Preparation Method of Polyurethane/Poly(N-isopropylacrylamide) Composite for Cooling System
E-mail:
초록
최근 환경과 에너지를 포함한 다양한 분야에서 효과적인 열방출을 위한 냉각재료가 중요해지고 있다. 지속가 능한 재료로 온도감응성 하이드로젤을 사용한 냉각시스템은 넓은 건물에 효과적인 미래솔루션으로 연구된 바 있으나 재료의 개발은 미흡한 상황이다. 본 연구에서는 체온 근처에서 하한 용액 임계 온도를 가지는 poly(N-isopropylacrylamide) 와 polyurethane을 결정화방법을 통해 복합소재로 만들고, 각각의 채널을 통한 빠른 반응성으로 냉각 재료로서의 응용이 가능하도록 설계했다. 또한 지속적인 물공급이 가능한 시스템을 함께 제안하고, 복합체로 강화된 물성을 얻으면서 효과적인 냉각이 가능한 소재를 구현했다. 이는 새로운 냉각 시스템으로서 다양한 응용분야에서의 활용 가능성을 제시한다.
As energy and environmental protection issues become important, the cooling methods need to be improved. Cooling systems using temperature-responsive hydrogels as sustainable materials have been studied as effective future solutions for large-area buildings or industrial plants, but the development of effective materials is still insufficient. In this study, a composite material was made of polyurethane and poly(N-isopropylacrylamide), which has a critical lower solution temperature near body temperature, by a crystallization method. It was designed to make its applications possible by using rapid response via channel structures. This system can continuously supply water was proposed, and the composites was possible to obtain a material capable of effective cooling while obtaining enhanced physical properties. As a new cooling system, it offers the possibility of commercialization in various applications.
  1. Cho JK, Moon JH, Kang HS, Korean J. Air-Cond. Refrig. Eng., 29, 29 (2016)
  2. Heidarinejad M, Dalgo DA, Mattise NW, Srebric J, J. Clean Prod., 171, 491 (2018)
  3. Li T, Zhai Y, He SM, Gan WT, Wei ZY, Heidarinejad M, Dalgo D, Mi RY, Zhao XP, Song JW, Dai JQ, Chen CJ, Aili A, Vellore A, Martini A, Yang RG, Srebric J, Yin XB, Hu LB, Science, 364(6442), 760 (2019)
  4. Pang HH, Brace CJ, Proc. Inst. Mech. Eng. D, 218, 1209 (2004)
  5. Emdadi Z, Asim N, Yarmo MA, Shamsudin R, APCBEE Procedia, 10, 69 (2014)
  6. Rotzetter ACC, Schumacher CM, Bubenhofer SB, Grass RN, Gerber LC, Zeltner M, Stark WJ, Adv. Mater., 24(39), 5352 (2012)
  7. Cui S, Hu Y, Huang Z, Ma C, Yu L, Hu X, Int. J. Therm. Sci., 79, 276 (2014)
  8. Bischofberger I, Trappe V, Sci. Rep., 5, 15520 (2015)
  9. Boutris C, Chatzi EG, Kiparissides C, Polymer, 38, 2567
  10. Halake KS, Lee J, Carbohydr. Polym., 105, 184 (2014)
  11. An S, Kim B, Lee J, J. Cryst. Growth, 469, 106 (2017)
  12. Cho YH, Lee JH, J. Ind. Eng. Chem., 60, 498 (2018)
  13. Kim J, Cho Y, Kim S, Lee J, ACS Macro Lett., 6, 1119 (2017)
  14. Kim BS, Lee J, J. Cryst. Growth, 373, 45 (2013)
  15. Kim BS, Lee J, Chem. Eng. J., 301, 158 (2016)
  16. Kang S, Kang TH, Kim BS, Oh J, Park S, Choi IS, Lee J, Son JG, Composites Part B: Eng., 162, 580 (2019)
  17. Lee SR, Lee JH, Polym. Korea, 43(4), 646 (2019)
  18. Kim G, Kim HJ, Noh H, Macromol. Res., 226, 278 (2018)
  19. Lee MK, Chung NO, Lee J, Polymer, 51(26), 6258 (2010)
  20. Lee S, Kim HJ, Chang SH, Lee J, Soft Matter., 9, 472 (2013)
  21. Shi Q, Liu H, Tang D, Li Y, Li X, Xu F, NPG Asia Materials, 11, 64 (2019)
  22. Lin YJ, Lee GH, Chou CW, Chen YP, Wu TH, Lin HR, J. Mater. Chem. B, 3, 1931 (2015)