화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.12, 1055-1063, November, 2020
Esterification of Cellulose Nanofibers with Valeric Acid and Hexanoic Acid
E-mail:
Cellulose nanofibers (CNFs) have received considerable attention as reinforcing fillers due to their excellent and versatile properties, including physical, morphological, and chemical features. Despite many advantages of CNFs, the hydrophilic nature of CNFs significantly limits their use as fillers. In this study, CNFs were modified by esterification with two kinds of carboxylic acids: valeric acid (VA) and hexanoic acid (HA). The degree of substitutions (DS) of VA-CNF and HA-CNF was 2.78 ± 0.04 and 2.61 ± 0.02, respectively. The dispersibility in an isopropanol solvent showed the controlled hydrophilicity of the modified CNFs. Moreover, the water contact angles of VA-CNF and HA-CNF were 79.2 ± 3.1° and 85.0 ± 1.7°, respectively, while the neat CNF was just 18.9 ± 1.6°. The thermogravimetric analysis (TGA) revealed that the modified CNFs have much better thermal stability than the neat CNFs. Also, the CNF films showed uniform-sized nano-porous structures after the modifications of CNFs. Combined with well-improved hydrophobicity, these multi-faceted results suggest that our esterification technique of CNFs can be applied in a wide range of eco-friendly materials applications.
  1. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J, Chem. Soc. Rev., 40, 3941 (2011)
  2. Klemm D, Philpp B, Heinze T, Heinze U, Wagenknecht W, Comprehensive Cellulose Chemistry, Volume 1: Fundamentals and Analytical Methods, Wiley-VCH Verlag GmbH, Weinheim, 1998.
  3. Habibi Y, Chem. Soc. Rev., 43, 1519 (2014)
  4. Wang Y, Wang X, Xie Y, Zhang K, Cellulose, 25, 3703 (2018)
  5. Brown RM, Montezinos D, Proc. Natl. Acad. Sci., 73, 143 (1976)
  6. Iwamoto S, Kai WH, Isogai A, Iwata T, Biomacromolecules, 10(9), 2571 (2009)
  7. Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A, Biomacromolecules, 10(1), 162 (2009)
  8. Nogi M, Iwamoto S, Nakagaito AN, Yano H, Adv. Mater., 21(16), 1595 (2009)
  9. Dufresne A, Curr. Opin. Colloid Interface Sci., 29, 1 (2017)
  10. Li W, Wu Q, Zhao X, Huang Z, Cao J, Li J, Liu S, Carbohydr. Polym., 113, 403 (2014)
  11. Trifol J, Plackett D, Sillard C, Szabo P, Bras J, Daugaard AE, Polym. Int., 65, 988 (2016)
  12. Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A, Biomacromolecules, 14(5), 1541 (2013)
  13. Eichhorn SJ, Soft Matter, 7, 303 (2011)
  14. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A, Angew. Chem.-Int. Edit., 50, 5438 (2011)
  15. Lam E, Male KB, Chong JH, Leung ACW, Luong JHT, Trends Biotechnol., 30, 283 (2012)
  16. Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L, Biomacromolecules, 10(8), 2144 (2009)
  17. Olszewska A, Eronen P, Johansson L, Malho J, Ankerfors M, Lindstrom T, Ruokolainen J, Laine J, Osterberg M, Cellulose, 18, 1213 (2011)
  18. Biyani MV, Foster EJ, Weder C, ACS Macro Lett., 2, 236 (2013)
  19. Barazzouk S, Daneault C, Cellulose, 19, 481 (2012)
  20. Habibi Y, Chanzy H, Vignon MR, Cellulose, 13, 679 (2006)
  21. Andresen M, Stenstad P, Moretro T, Langsrud S, Syverud K, Johansson LS, Stenius P, Biomacromolecules, 8(7), 2149 (2007)
  22. Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY, Biomacromolecules, 6(5), 2732 (2005)
  23. Eyley S, Thielemans W, Nanoscale, 6, 7764 (2014)
  24. Yuan HH, Nishiyama Y, Wada M, Kuga S, Biomacromolecules, 7(3), 696 (2006)
  25. Huang L, Wu Q, Wang Q, Wolcott M, ACS Sustain. Chem. Eng., 7, 15920 (2019)
  26. Gorade VG, Kotwal A, Chaudhary BU, Kale RD, J. Polym. Res., 26, 217 (2019)
  27. Blaker JJ, Lee KY, Li X, Menner A, Bismarck A, Green Chem., 11, 1321 (2009)
  28. Fujisawa S, Okita Y, Saito T, Togawa E, Isogai A, Cellulose, 18, 1191 (2011)
  29. Habibi Y, Lucia LA, Rojas OJ, Chem. Rev., 110(6), 3479 (2010)
  30. Yang BY, Montgomery R, Starch-Starke, 58, 520 (2006)
  31. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK, Biotechnol. Biofuels, 3, 10 (2010)
  32. Manhas N, Balasubramanian K, Prajith P, Rule P, Nimje S, RSC Adv., 5, 23999 (2015)
  33. Tanaka S, Iwata T, Iji M, ACS Sustain. Chem. Eng., 5, 1485 (2017)
  34. Lee CM, Kubicki JD, Fan BX, Zhong LH, Jarvis MC, Kim SH, J. Phys. Chem. B, 119(49), 15138 (2015)
  35. Imai T, Sugiyama J, Macromolecules, 31(18), 6275 (1998)
  36. Gomez-Ordonez E, Ruperez P, Food Hydrocolloids, 25, 1514 (2011)
  37. Dankovich TA, Hsieh YL, Cellulose, 14, 469 (2007)
  38. Vlachos N, Skopelitis Y, Psaroudaki M, Konstantinidou V, Chatzilazarou A, Tegou E, Anal. Chim. Acta, 573-574, 459 (2006)
  39. Marubayashi H, Yukinaka K, Enomoto-Rogers Y, Takemura A, Iwata T, Carbohydr. Polym., 103, 427 (2014)
  40. Thiebaud-Roux S, Valorisation Chimique de Domposes Lignocellulosiques, Institut National Polytechnique de Toulouse, 1995.
  41. Wen X, Wang H, Wei Y, Wang X, Liu C, Carbohydr. Polym., 168, 247 (2017)
  42. Sealey JE, Samaranayake G, Todd JG, Glasser WG, J. Polym. Sci. B: Polym. Phys., 34(9), 1613 (1996)
  43. Fundador NGV, Enomoto-Rogers Y, Takemura A, Iwata T, Carbohydr. Polym., 87, 170 (2012)
  44. Maim CJ, Mench JW, Kendall DL, Hiatt GD, Ind. Eng. Chem., 43, 684 (1951)
  45. Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, Fuel, 86(12-13), 1781 (2007)
  46. Lin YC, Cho J, Tompsett GA, Westmoreland PR, Huber GW, J. Phys. Chem. C, 113, 20097 (2009)