화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.12, 2317-2325, December, 2020
Thermally stable amine-functionalized silica sorbents using one-pot synthesis method for CO2 capture at low temperature
E-mail:,
Amine-functionalized silica sorbents have been widely investigated for post-combustion CO2 capture at low temperature. In previous studies, amine-functionalized silica sorbents were prepared using a synthetic hierarchically porous silica, which is not commercially available in large quantities, because porous silica support structures strongly influence CO2 capture performance. Here, we propose a feasible and facile fabrication method for amine-functionalized silica sorbents using 3-aminopropyltrimethoxy silane (APTS) and fumed silica (FS), where APTS serves as both an active material and a binder. The APTS-functionalized FS sorbents have large amounts of active amino groups and porous structures and demonstrate good multicycle stability with excellent CO2 capture performance. In addition, cetyltrimethylammonium bromide was found to improve the diffusion pathway of CO2, leading to enhanced CO2 capture capacity because of the suppression of excessive condensation during preparation. Therefore, the APTS-functionalized FS sorbents could be cost- and energy-efficiently prepared using a novel one-pot synthesis method; the resulting sorbents exhibit excellent CO2 capture performance.
  1. Aaron D, Tsouris C, Sep. Sci. Technol., 40(1-3), 321 (2005)
  2. Hofmann DJ, Butler JH, Tans PP, Atmos. Environ., 43, 2084 (2009)
  3. Keith DW, Science, 325, 1654 (2009)
  4. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, et al., J. Geophys. Res. Atmos., 111, D05109 (2006)
  5. Gillett NP, Arora VK, Flato GM, Scinocca JF, von Salzen K, Geophys. Res. Lett., 39, L01704 (2012)
  6. Santer BD, Painter JF, Mears CA, Doutriaux C, Caldwell P, et al., Proc. Natl. Acad. Sci. U.S.A., 110, 26 (2013)
  7. Anderson TR, Hawkins E, Jones PD, Endeavour, 40, 178 (2016)
  8. Maibach EW, Kreslake JM, Roser-Renouf C, Rosenthal S, Feinberg G, Leiserowitz AA, Ann. Global Health, 81, 396 (2015)
  9. Melillo JM, Richmond T, Yohe G, Third National Climate Assessment, U.S. Global Change Research Program (2014).
  10. Schnell JL, Prather MJ, Josse B, Naik V, Horowitz LW, Zeng G, Shindell DT, Faluvegi G, Geophys. Res. Lett., 43, 3509 (2016)
  11. Hagewiesche DP, Ashour SS, Alghawas HA, Sandall OC, Chem. Eng. Sci., 50(7), 1071 (1995)
  12. Mavroudi M, Kaldis SP, Sakellaropoulos GP, Fuel, 82(15-17), 2153 (2003)
  13. Sayari A, Belmabkhout Y, Serna-Guerrero R, Chem. Eng. J., 171(3), 760 (2011)
  14. Sethia G, Sayari A, Carbon, 93, 68 (2015)
  15. Shen CZ, Grande CA, Li P, Yu JG, Rodrigues AE, Chem. Eng. J., 160(2), 398 (2010)
  16. Siriwardane RV, Shen MS, Fisher EP, Poston JA, Energy Fuels, 15(2), 279 (2001)
  17. Takamura Y, Narita S, Aoki J, Hironaka S, Uchida S, Sep. Purif. Technol., 24(3), 519 (2001)
  18. Thompson JA, Vaughn JT, Brunelli NA, Koros WJ, Jones CW, Nair S, Microporous Mesoporous Mater., 192, 43 (2014)
  19. Yong Z, Mata V, Rodrigues AE, J. Chem. Eng. Data, 45, 1093 (2000)
  20. Yong Z, Mata V, Rodriguez AE, Ind. Eng. Chem. Res., 40(1), 204 (2001)
  21. Yong Z, Mata V, Rodrigues AE, Sep. Purif. Technol., 26(2-3), 195 (2002)
  22. Yong Z, Mata VG, Rodrigues AE, Adsorption, 7, 41 (2001)
  23. Yong Z, Rodrigues AE, Energy Conv. Manag., 43(14), 1865 (2002)
  24. Zou Y, Rodrigues AE, Ads. Sci. Technol., 19, 255 (2001)
  25. Chen C, Yang ST, Ahn WS, Ryoo R, Chem. Commun., 24, 3627 (2009)
  26. Goeppert A, Meth S, Prakash GS, Olah GA, Energy Environ. Sci., 3, 1949 (2010)
  27. Qi G, Wang Y, Estevez L, Switzer AK, Duan X, Yang X, Giannelis EP, Chem. Mater., 22, 2693 (2010)
  28. Wang J, Long D, Zhou H, Chen Q, Liu X, Ling L, Energy Environ. Sci., 5, 5742 (2012)
  29. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW, Energy Fuels, 16(6), 1463 (2002)
  30. Xu XC, Song CS, Miller BG, Scaroni AW, Ind. Eng. Chem. Res., 44(21), 8113 (2005)
  31. Chang ACC, Chuang SSC, Gray M, Soong Y, Energy Fuels, 17(2), 468 (2003)
  32. Delaney SW, Knowles GP, Chaffee AL, Fuel Chem. Div. Preprints, 47, 65 (2002)
  33. Hahn MW, Steib M, Jentys A, Lercher JA, J. Phys. Chem. C, 119, 4126 (2015)
  34. Harlick PJE, Sayari A, Ind. Eng. Chem. Res., 45(9), 3248 (2006)
  35. Harlick PJE, Sayari A, Ind. Eng. Chem. Res., 46(2), 446 (2007)
  36. Knowles GP, Delaney SW, Chaffee AL, Ind. Eng. Chem. Res., 45(8), 2626 (2006)
  37. Leal O, Bolivar C, Ovalles C, Garcia JJ, Espidel Y, Inorg. Chim. Acta., 240, 183 (1995)
  38. Chen C, Kim J, Ahn WS, Korean J. Chem. Eng., 31(11), 1919 (2014)
  39. Wang J, Huang L, Yang R, Zhang Z, Wu J, Gao Y, Wang Q, O'Hare D, Zhong Z, Energy Environ. Sci., 7, 3478 (2014)
  40. Choi W, Min K, Kim C, Ko YS, Jeon JW, Seo H, Park YK, Choi M, Nat. Commun., 7, 12640 (2016)
  41. Quang Dang Viet, Hatton T. Alan, Abu-Zahra Mohammad R. M., Ind. Eng. Chem. Res., 55(29), 7842 (2016)
  42. Rahman I, Jafarzadeh M, Sipaut C, Ceram. Int., 35, 1883 (2009)
  43. Sing KS, J. Porous Mater., 2, 5 (1995)
  44. Mittal N, Samanta A, Sarkar P, Gupta R, Energy Sci. Eng., 3, 207 (2015)
  45. Kim HJ, Chaikittisilp W, Jang KS, Didas SA, Johnson JR, Koros WJ, Nair S, Jones CW, Ind. Eng. Chem. Res., 54, 4407 (2014)