화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.32, No.4, 251-259, November, 2020
Shear viscosity calculation of water in nanochannel: molecular dynamics simulation
E-mail:
Shear viscosity is one of the important transport properties which affects different phenomena in nanoconfined water. This study aims to investigate the effect of sub-Angstrom variations of nanochannel size on the shear viscosity of water confined in a silicon wall by employing equilibrium molecular dynamics (EMD) simulations. Simulation results demonstrate that water molecules confined in the slits are layered and for channels width less than 21 A, the number of layers varies from one to six. We show that if the capillary size becomes less than 18.5 A, the sub-Angstrom variations significantly affect the layered structure of the confined water. This causes the anomalous behavior of water viscosity and therefore, the flow resistance of nanoconfined water. According to the previous studies, the shear viscosity is greatly enhanced for subnanometer capillaries so that the shear viscosity increases dramatically by decreasing the channel size; however, we found that shear viscosity obeys an oscillatory behavior and has a complicated behavior which originates from the consistency between the channel size and the space required to embed one layer of water molecules. Results show that five minima and four maxima values for the viscosity are observed for channels width less than 18.5 A. Such unfamiliar behavior of viscosity and, consequently, the flow resistance, friction coefficient and slip length should be taken into account in investigation and design of such nanoconfined water.
  1. Abgrall P, Nguyen NT, Anal. Chem., 80, 2326 (2008)
  2. Allen MP, Tildesley DJ, Computer Simulation of Liquids, Oxford University Press, 1987.
  3. Angelikopoulos P, Papadimitriou C, Koumoutsakos P, J. Phys. Chem. B, 117(47), 14808 (2013)
  4. Babu JS, Sathian SP, J. Chem. Phys., 105, 9396 (2011)
  5. Bereadsea HJC, J. Phys. Chem., 1, 12 (1987)
  6. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF, ACS Nano, 3, 307 (2009)
  7. Delgado-Barrio G, Prosmiti R, Villarreal P, Winter G, Medina JS, Gonzalez B, Aleman JV, Gomez JL, Sangra P, Santana JJ, Torres ME, Front. Quantum Syst. Chem. Phys., 18, 351 (2008)
  8. Dhinojwala A, Granick S, Phys. Rev. Lett., 87, 096104 (2001)
  9. Evans DJ, Holian BL, J. Chem. Phys., 83, 4069 (1985)
  10. Frenkel D, Smit B, Understanding Molecular Simu-lation: From Algorithms to Applications, Elsevier 2002.
  11. Giannakopoulos AE, Sofos F, Karakasidis TE, Liakopoulos A, Int. J. Heat Mass Transf., 55(19-20), 5087 (2012)
  12. Guo GJ, Zhang YG, Mol. Phys., 99, 283 (2001)
  13. Hansen JP, McDonald IR, Theory of Simple Liquids : With Applications to Soft Matter, Amsterdam, 2013.
  14. Holian BL, Voter AF, Ravelo R, Phys. Rev. E, 52, 2338 (1995)
  15. Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O, Science, 312, 1034 (2006)
  16. Hongfei Y, Zhang H, Zhang Z, Zheng Y, Nanoscale Res. Lett., 6, 87 (2011)
  17. Huang LL, Zhang LZ, Shao Q, Wang J, Lu LH, Lu XH, Jiang SY, Shen WF, J. Phys. Chem. B, 110(51), 25761 (2006)
  18. Hummer G, Rasaiah JC, Noworyta JP, Nature, 414, 188 (2001)
  19. Kalra A, Garde S, Hummer G, Proc. Natl. Acad. Sci., 100, 10175 (2003)
  20. Kannam SK, Todd BD, Hansen JS, Daivis PJ, J. Chem. Phys., 138, 094701 (2013)
  21. Kotsalis EM, Walther JH, Koumoutsakos P, Int. J. Multiph. Flow, 30(7-8), 995 (2004)
  22. Kannam KS, Todd BD, Hansen JS, Daivis PJ, J. Chem. Phys., 136, 024705 (2012)
  23. Liu Y, Wang Q, Phys. Rev. B, 72, 085420 (2005)
  24. Ma MD, Shen L, Sheridan J, Liu JZ, Chen C, Zheng Q, Phys. Rev. E, 83, 036316 (2011)
  25. Maitland G, Rigby M, Smith E, Wakeham W, Henderson D, Phys. Today, 36, 57 (1983)
  26. Major RC, Houston JE, McGrath MJ, Siepmann JI, Zhu XY, Phys. Rev. Lett., 96, 5 (2006)
  27. Majumder M, Chopra N, Andrews R, Hinds S, Nature, 438, 930 (2005)
  28. Pit R, Hervet H, Leger L, Phys. Rev. Lett., 85, 980 (2000)
  29. Plimpton S, J. Comput. Phys., 19, 117 (1995)
  30. Qiu H, Zeng XC, Guo W, ACS Nano, 9, 9877 (2015)
  31. Raviv U, Science, 297, 1540 (2002)
  32. Raviv U, Laurat P, Klein J, Nature, 413, 51 (2001)
  33. Mario SFM, Neek-Amal M, Peeters FM, Phys. Rev. B, 92, 245428 (2015)
  34. Stukowski A, Model. Simul. Mater. Sci. Eng., 18, 015012 (2010)
  35. Thomas JA, McGaughey AJH, Nano Lett., 8, 2788 (2008)
  36. Whitesides GM, Stroock AD, Phys. Today, 54, 42 (2001)
  37. Zangi R, Mark AE, Phys. Rev. Lett., 91, 025502 (2003)
  38. Zangi R, Mark AE, J. Chem. Phys., 120(15), 7123 (2004)
  39. Zeng HB, Wu KL, Cui X, Chen ZX, Nano Today, 16, 7 (2017)
  40. Zhao SF, Zou L, Tang CYY, Mulcahy D, J. Membr. Sci., 396, 1 (2012)
  41. Zhu YD, Zhang LZ, Lu XH, Lu LH, Wu XM, Fluid Phase Equilib., 362, 235 (2014)