화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.90, 105-116, October, 2020
Effect of particle size and concentration on bubble size distribution and aspect ratio in a counter-current microstructured bubble column
E-mail:
The experimental study of bubble size and its distribution and bubble aspect ratio in a dense bubbly flow conditions remains challenging. The present work enunciates the bubble size and its distribution, and bubble aspect ratio in two (air-water) and three-phase (air-water-coal particle) in a counter-current microstructured bubble column with and without surfactant. The effects of dispersed and continuous phase velocity, solid loading, and solid size are investigated. The results show that an increase in the dispersed phase velocity, the particle concentration led to a rise in Sauter mean bubble diameter, while, it is decreased with an increase in the continuous phase velocity and particle size. The aspect ratio of the bubble decreases as the Eotovos number increases. Bubble size distributions follow the log-logistic cumulative distribution function. Bubbles in the present system are plotted in the grace diagram, indicating that the bubbles cover both the spherical and ellipsoidal shape regimes. A generic empirical correlation is proposed for the Sauter mean bubble diameter and distribution function parameters in terms of operating conditions and physical properties of the system. Experimental data and correlations from the literature and this study were compared with the results of the proposed correlation.
  1. Han OH, Kim MK, Kim BG, Subasinghe N, Park CH, Fuel Process. Technol., 126, 49 (2014)
  2. Gandhi B, Prakash A, Bergougnou MA, Powder Technol., 103(2), 80 (1999)
  3. Shaikh A, Al-Dahhan MH, Int. J. Chem. Reactor Eng., 5 (207)
  4. Li H, Prakash A, Powder Technol., 113(1-2), 158 (2000)
  5. Leonard C, Ferrasse JH, Boutin O, Lefevre S, Viand A, Chem. Eng. Res. Des., 100, 391 (2015)
  6. Zhang LJ, Li T, Ying WY, Fang DY, Chem. Eng. Res. Des., 86(10A), 1143 (2008)
  7. Prakash R, Majumder SK, Singh A, Ind. Eng. Chem. Res., 58(8), 3499 (2019)
  8. Azgomi F, Gomez CO, Finch JA, Int. J. Miner. Process., 83(1-2), 1 (2007)
  9. Besagni G, et al., Water Flow in a Large Diameter Vertical Pipe with Inners p. 012024, IOP Publishing, 2014.
  10. Besagni G, Inzoli F, Chem. Eng. Sci., 170, 270 (2017)
  11. Besagni G, Inzoli F, Chem. Eng. Res. Des., 118, 170 (2017)
  12. Shah M, Kiss AA, Zondervan E, van der Schaaf J, de Haan AB, Ind. Eng. Chem. Res., 51(43), 14268 (2012)
  13. Besagni G, Inzoli F, Exp. Therm. Fluid Sci., 74, 27 (2016)
  14. Besagni G, Inzoli F, Chem. Eng. Sci., 146, 259 (2016)
  15. Guido G, Pellegrini LA, Chem. Eng. Res. Des., 124, 283 (2017)
  16. Besagni G, Inzoli F, De Guido G, Pellegrini LA, Chem. Eng. Sci., 158, 509 (2017)
  17. Vazirizadeh A, Bouchard J, Chen Y, Int. J. Miner. Process., 157, 163 (2016)
  18. Maldonado M, Quinn JJ, Gomez CO, Finch JA, Chem. Eng. Sci., 98, 7 (2013)
  19. Bozzano G, Dente M, Comput. Chem. Eng., 25(4-6), 571 (2001)
  20. Aoyama S, Hayashi K, Hosokawa S, Tomiyama A, Exp. Therm. Fluid Sci., 96, 460 (2018)
  21. Zhen T, Cheng Y, Li X, Wang L, Exp. Therm. Fluid Sci., 102, 528 (2019)
  22. Li H, Liu Z, Chen J, Sun B, Guo Y, He H, Exp. Therm. Fluid Sci., 88, 554 (2017)
  23. Besagni G, Inzoli F, Flow Meas. Instrum., 67, 55 (2019)
  24. Prakash R, Majumder SK, Singh A, Powder Technol., 366, 761 (2020)
  25. Einstein A, Ann. Phys., 324, 289 (1906)
  26. Thomas DG, J. Colloid Sci., 20, 267 (1965)
  27. Prakash R, Majumder SK, Singh A, Ind. Eng. Chem. Res., 59(16), 8093 (2020)
  28. Passos AD, Voulgaropoulos VP, Paras SV, Mouza AA, Chem. Eng. Res. Des., 95, 93 (2015)
  29. Shukla SC, Kukade S, Mandal SK, Kundu G, Fuel, 87(15-16), 3428 (2008)
  30. Yoshida T, Katsumoto T, Taniguchi S, Shimosaka A, Shirakawa Y, Hidaka J, Chem. Eng. Trans., 32, 2089 (2013)
  31. Luewisutthichat W, Tsutsumi A, Yoshida K, J. Chem. Eng. Jpn., 30(3), 461 (1997)
  32. Behkish A, Lemoine R, Sehabiague L, Oukaci R, Morsi BI, Chem. Eng. J., 128(2-3), 69 (2007)
  33. Ojima S, Sasaki S, Hayashi K, Tomiyama A, J. Chem. Eng. Jpn., 48(3), 181 (2015)
  34. Sarhan AR, Naser J, Brooks G, Particuology, 36, 82 (2018)
  35. Rabha S, Schubert M, Hampel U, Chem. Eng. Sci., 93, 401 (2013)
  36. Tavera FJ, Escudero R, J. Mex. Chem. Soc., 56, 217 (2012)
  37. Xu LJ, Xia ZH, Guo XF, Chen CX, Ind. Eng. Chem. Res., 53(12), 4922 (2014)
  38. Senapati PK, Panda D, Parida A, J. Miner. Mater. Charact. Eng., 8, 203 (2009)
  39. Zhou ZA, Plitt LR, Egiebor NO, Miner. Eng., 6, 291 (1993)
  40. Kawatra SK, Eisele TC, Int. J. Miner. Process., 22, 251 (1988)
  41. Sugihara K, Sanada T, Shirota M, Watanabe M, Kagaku Kogaku Ronbun., 33, 402 (2007)
  42. Okawa T, Tanaka T, Kataoka I, Mori M, Int. J. Heat Mass Transf., 46(5), 903 (2003)
  43. Fan LS, Tsuchiya K, Bubble Wake Dynamics in Liquids and Liquid Solid Suspension, Butter-worth-Heinemann Series in Chemical Engineering, (1990).
  44. Vakhrushev IA, Efremov GI, Chem. Technol. Fuels Oils, 6, 376 (1970)
  45. Tian Z, Cheng Y, Li X, Wang L, Exp. Therm. Fluid Sci., 102, 528 (2019)
  46. Dong HF, Wang XL, Liu L, Zhang XP, Zhang SJ, Chem. Eng. Sci., 65(10), 3240 (2010)
  47. Besagni G, Deen NG, Chem. Eng. Sci., 115383 (2019).
  48. Aoyama S, Hayashi K, Hosokawa S, Tomiyama A, Int. J. Multiph. Flow, 79, 23 (2016)
  49. Wellek RM, Agrawal AK, Skelland AHP, AIChE J., 12, 854 (1966)
  50. Grace JR, Chem. Eng. Res. Des., 54, 167 (1976)
  51. Clift R, Grace JR, Weber ME, Bubbles, Drops and Particles, Academic Press, New York, 1978.
  52. Prakash R, Majumder SK, Singh A, Chem. Eng. Res. Des., 156, 108 (2020)