화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.58, No.4, 618-623, August, 2020
구형 페놀수지 입자의 크레졸을 이용한 가교조절 및 탄화물성 변화
Crosslinking Density Control and Its Carbonization Characteristics of Spherical Phenolic Resin Particles by Using Cresol as Comonomer
E-mail:
초록
구형 페놀수지 입자 및 상대적으로 가교밀도가 낮은 구형 페놀-크레졸 공중합체 수지를 페놀, ortho-크레졸, 및 포름알데히드로부터 염기성 촉매인 트리에틸아민(triethylamine)의 존재 하에 98 °C에서 현탁중합을 통하여 합성하였다. 페놀은 두 개의 ortho 및 한 개의 para 위치에서 포름알데히드와 반응하여 가교구조를 형성하지만 ortho-크레졸은 선점된 하나의 ortho 위치의 methyl 기로 인하여 공중합 시 가교 밀도를 저하시킨다. 그 영향으로 700 °C 질소 환경에서의 탄화 시 구형 페놀수지 비드에 비해 구형 페놀-크레졸 공중합체 수지의 경우 겉보기 밀도의 감소와 함께 수축율의 증가 현상이 일어나는 것을 확인할 수 있었다. 크레졸 올리고머의 분자량이 증가함에 따라 탄화 된 공중 합체 비드의 기공 반경이 감소하여 밀도 및 수축 결과와 일치 하였으며, 크레졸을 이용하여 구형 페놀수지 입자의 가교도를 조절함으로써 탄화과정에서의 밀도 감소율이 약 3~6%포인트 증가되고, 수축율은 약 6~20%포인트 증가함을 확인하였다.
Spherical phenolic resin beads were synthesized by suspension polymerization at 98 °C from phenol, ortho-cresol, formaldehyde, with triethylamine as a basic catalyst, and spherical phenol-cresol copolymer resin beads with relatively low crosslinking density as well. Phenol reacts with formaldehyde at two ortho- and one para- positions to form a crosslinked structure, but ortho-cresol instead of phenol reduces the crosslinking density during copolymerization due to the methyl group at a ortho- position. As a result, spherical phenol-cresol copolymer beads showed more shrinkage with decreasing apparent density compared to the spherical phenol beads when carbonized at 700 °C under nitrogen. As the molecular weight of the cresol oligomer increases, the pore radius of the carbonized copolymer beads decreases, which is consistent with the density and shrinkage results. It was confirmed that the characteristics such as density decrease, shrinkage, yield and so on during carbonization can be controlled by controlling the degree of crosslinking of the spherical phenolic resin particles with cresol.
  1. Knop A, Pilato LA, Phenolic Resins. Springer, Berlin (1986).
  2. Weyl H, Ed., Handbuch der Organischen Chemie, Makromolekulare Stoffie, 4th ed., vols. 14/1 and 14/2 Thieme, Stuttgart (1961).
  3. Nylen P, Sunderland E, Modern Surface Coatings, Wiley, London(1965).
  4. Bechmann A, Miiler K, Phenoplaste VEB, Verlag, Leipzig (1973).
  5. Hultzsch K, Chemie der Phenolrarze, Springer, Berlin(1950).
  6. Carswell, T. S. High Polymer, Vol. VII: Phenoplasts, Their Structure, Properties and Chemical Technology, Inter Science, New York(1947).
  7. Megson NJL, Phenol Resin Chemistry, Butterworth, London(1958).
  8. Martin RW, The Chemistry of Phenolic Resins: the Formation, Structure and Reactions of Phenolic Resins Related Products, Wiley, New York(1956).
  9. Hesse W, In Ullmanns Encyclopedia of Industrial Chemistry, Vol. A19, 371, Weinheim(1991).
  10. Kirk-Othmer, Ed. Encyclopedia of Chemical Technology, 3rd ed., Vol. 17 Phenolic Resins, Wiley, New York(1983).
  11. Grenierloustalot MF, Larroque S, Grenier P, Bedel D, Polymer, 37(6), 955 (1996)
  12. Bakelite LH, Ind. Eng. Chem., 5, 506 (1913)
  13. Gould DF, Phenolic Resins, Reinhold, New York(1959).
  14. Fry JS, Merrium CN, Boyd WH, ACS Symp. Series, 285, 1141 (1985)
  15. Frunchtel JS, Jung G, Angew. Chem.-Int. Edit., 35, 17 (1996)
  16. Kempe M, Barany G, J. Am. Chem. Soc., 118(30), 7083 (1996)
  17. Hodge P, Chem Soc Rev, 26, 417 (1997)
  18. Abraham S, Rajan PK, Sreekumar K, J. Appl. Polym. Sci., 65(6), 1169 (1997)
  19. Klampfl CW, Buchberger W, Rieder G, Bonn GK, J. Chromatogr. A, 770, 23 (1997)
  20. Steinke JHG, Sherrington DC, Dunkin JR, Adv. Polym. Sci., 123, 81 (1995)
  21. Mayes AG, Mosbach K, Trends in Anal. Chem., 16, 321(1997).
  22. Sellergren B, Dauwe C, Schneider T, Macromolecules, 30(8), 2454 (1997)
  23. Chen G, Guan Z, Chen CT, Fu L, Sundaresan V, Arnold FH, Nat. Biotechnol., 15, 354 (1997)
  24. Arshady R, Colloid Polym. Sci., 270, 717 (1992)
  25. Yuan HG, Kalfas G, Ray WH, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C31, 215 (1991)
  26. Vivaldolima E, Wood PE, Hamielec AE, Penlidis A, Ind. Eng. Chem. Res., 36(4), 939 (1997)
  27. Svec F, Frechet JM, Science, 273(5272), 205 (1996)
  28. Lewandowski K, Svec F, Frechet JMJ, J. Appl. Polym. Sci., 67(4), 597 (1998)
  29. Jo YD, Park KS, Ahn JH, Ihm SK, Eur. Polym. J., 65, 967 (1996)
  30. Coutinho FM, Neves MA, Dias ML, J. Appl. Polym. Sci., 65(7), 1257 (1997)
  31. Liang YC, Svec F, Frechet JM, J. Polym. Sci. A: Polym. Chem., 35(13), 2631 (1997)
  32. Hatori T, Sekiguchi H, Ogura, K., “Production on Pressure/Heat-Sensitive Self-Curing Spherical Phenolic Resin,” Jpn. Pat. 11060664(1997).
  33. Nishiguchi S, Matsuo Y, “Production of Spherical Phenol Resin cured Material and Reaction Apparatus Therefor,” Jpn. Pat. 12053737(1998).
  34. Tochimoto T, Matsuo Y, “Low-Density Cured Spherical Phenolic Resin,” Jpn. Pat. 12239336(1999).
  35. Tochimoto T, Matsuo Y, “Preparation of Low-Density Globular Phenol Resin cured Product,” Jpn. Pat. 12256431(1999).
  36. Matsuo Y, Sasaki T, “Production of Spherical Phenol Resin,”Jpn. Pat. 11116648(1997).
  37. Hahn D, Kim D, Kim H, Korean Chem. Eng. Res., 51(2), 279 (2013)
  38. Hahn D, Kim H, Korean Chem. Eng. Res., 52(1), 63 (2014)