화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.58, No.4, 581-587, August, 2020
안전을 고려한 상용 2,3-Butanediol 탈수반응 시스템 설계
Design of Commercial 2,3-Butanediol Dehydration Reaction System Considering Safety
E-mail:
초록
본 연구에서는 기존의 2,3-Butanediol (2,3-BDO) 탈수 반응시스템의 문제점을 해결하기 위해 새로운 반응 시스템이 제안되었다. 대기압 근처에서 2,3-BDO 반응물을 반응온도 360 °C 까지 올리기 위해서, 상용공정에서 일반적으로 사용되는 용광로를 사용하게 되면 반응 시스템이 적절히 작동할 수 없다는 것이 확인되었다. 그것은 2,3-BDO 올리고머로 고려되는 물질 때문이다. 그것은 용광로 튜브 안의 막힘, 폭발과 같은 안전 문제 뿐 아니라 반응 시스템의 유지보수의 어려운 문제점을 일으킬 수 있다. 그러한 문제점을 해결하기 위한 방법은 용광로를 대신해 감압운전 하에서 고압스팀을 사용하는 열교환기를 사용해서 반응물의 온도를 낮추고 반응 온도를 낮추는 것이다. 반응 속도론을 사용하여, 반응기의 성능이 감압운전과 더 낮은 온도, 330 °C에서 크게 다르지 않다는 것을 보였다. 이 결과는 왜 새로운 반응 시스템이 제안되었는지를 설명한다.
In this study, a new reaction system is proposed to solve the problems of the existing 2,3-Butanediol (2,3- BDO) dehydration reaction system. It was confirmed that the reaction system did not wok as it should operate properly when using a furnace, which is commonly used in commercial processes, to raise the reactant, 2,3-BDO, to the reaction temperature, 360 °C, at near atmoshperic pressure. It is because of the substance considered to be oligomers of 2,3-BDO. It can lead to safety problems, such as blockages inside the furnace’s tube and explosions, as well as tricky maintenance issues in the reaction system. To solve it, the temperature of reactant can be brought down by using a heat exchanger with High Pressure (HP) steam instead of the furnace, which has a hot spot problem through the vacuum operation and reduce the reaction temperature. It can be seen that the reactor performance is almost similar under the vacuum operation and the lower reaction temperature, 330 °C, by using a reaction kinetics. This result explains why the new reaction system is proposed.
  1. Bai Y, Page SJ, Zhang J, Zhao X, CHEM ENG J, 389, 124451 (2020)
  2. Lee SY, Kim HU, Chae TU, Cho JS, Shin JH, Kim DI, Ko Y, Jang WD, Jang Y, Nat. Catal., 2, 18 (2019)
  3. Sun D, Li Y, Yang C, Su Y, Yamada Y, Sato S, Fuel Process. Technol., 197, 106193 (2020)
  4. Song D, Ind. Eng. Chem. Res., 55(45), 11664 (2016)
  5. Song D, Ind. Eng. Chem. Res., 56(39), 11013 (2017)
  6. Song D, Catalysts, 8(2), 1 (2018)
  7. Song DS, Yoon YG, Lee CJ, Korean J. Chem. Eng., 35(12), 2348 (2018)
  8. Song D, Yoon YG, Seo SK, Lee CJ, Processes, 7, 1 (2019)
  9. Lee KO, Park JY, Lee CJ, Korean Chem. Eng. Res., 35(2), 348 (2018)
  10. You CH, Kim JY, Korean Chem. Eng. Res., 56(3), 335 (2018)