화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.58, No.4, 536-540, November, 2020
고분자연료전지에 사용되는 e-PTFE 지지체의 펜톤반응 후 화학적 열화
Chemical Degradation of e-PTFE Support Used in PEMFC after Fenton Reaction
E-mail:
초록
고분자연료전지(PEMFC) 고분자막의 지지체는 기계적 내구성 향상에 핵심적인 역할을 한다. 지지체로 사용하는 e-PTFE는 화학적으로 안정하여 PEMFC 구동과정에서 전기화학적인 열화에 대해서는 거의 연구되지 않았다. 본 연구에서는 e-PTFE가 Fenton 반응과정에서 발생한 라디칼과 과산화수소에 화학적으로 안정한지 검토하였다. Fenton 반응과정에서 e-PTFE의 주사슬이 끊어져 지지체의 화학적 구조와 형태 변화가 발생하였고, 그에 따라 인장 강도가 감소하였다. 실제 PEMFC 구동과정에서 고분자막 이오노머의 전기화학적 열화는 라디칼과 과산화수소에 의해서 고분자막내부에서 발생하므로, e-PTFE 지지체의 셀 내에서 전기화학적 열화도 발생할 수 있음을 본 연구 결과가 보였다.
The support of the PEMFC membrane plays a key role in improving mechanical durability. The e-PTFE used as a support is chemically stable, so electro-chemical degradation in the PEMFC driving process has been rarely studied. In this study, we investigated whether e-PTFE is chemically stable to radicals and hydrogen peroxide during Fenton reaction. After the Fenton reaction, the main chain of e-PTFE broke, resulting in a change in the chemical structure and morphology of the support, resulting in a decrease in tensile strength. The results of this study showed that electrochemical degradation of the membrane ionomer in the PEMFC process occurs inside the membrane by radicals and hydrogen peroxide, so that electrochemical degradation may also occur at the e-PTFE support in the cell.
  1. Wang GJ, Yu Y, Liu H, Gong CL, Wen S, Wang XH, Tu ZK, Fuel Process. Technol., 179, 203 (2018)
  2. Department of Energy, https://wwwenergygov/ (2016).
  3. New Energy and Industrial Technology Development Organization, http://wwwnedogojp/english/indexhtml (2016).
  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org (2016).
  5. Ministry of Science and Technology of the People’s Republic of China, http://wwwmostgovcn/eng (2016).
  6. Gore Enterprise Holdings, Inc, PCT/US2002/027338.
  7. Lai YH, Mittelsteadt CK, Gittleman CS, Dillard DA, J. Fuel Cell Sci. Technol., 6(2), 021002 (2009)
  8. Spernjak D, Mukherjee PP, Mukundan R, Davey J, Hussey DS, Jcobson D, Borup RL, ECS Trans., 33(1), 1451 (2010)
  9. MacKinnon SM, Fuller, Coms FD, Schoeneweiss MR, Gittleman CS, Lai Y, Jiang HR, Brenner AM, Encyclopedia of Electrochemical Power Sources, Elsvier, Amsterdam, Pages 741-754 2009.
  10. Craig S, Gittleman CS, Coms FD, Lai YH, Academic Press, Boston, Pages 15-88 2012.
  11. Crum M, Liu W, ECS Trans., 3(1), 541 (2006)
  12. Tang YL, Kusoglu A, Karlsson AM, Santare MH, Cleghorn S, Johnson WB, J. Power Sources, 175(2), 817 (2008)
  13. Khattra NS, Lu ZW, Karlsson AM, Santare MH, Busby FC, Schmiedel T, J. Power Sources, 228, 256 (2013)
  14. Kusoglu A, Santare MH, Karlsson AM, Cleghorn S, Johnson WB, Journal of The Electrochemical Society, 157(5), B705-B713(2010).
  15. Kusoglu A, Karlsson AM, Santare MH, Cleghorn S, Johnson WB, J. Power Sources, 170(2), 345 (2007)
  16. Wang F, Tang HL, Pan M, Li DX, Int. J. Hydrog. Energy, 33(9), 2283 (2008)
  17. Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z, J. Power Sources, 158(2), 1222 (2006)
  18. Kim T, Lee J, Cho G, Park K, Korean Chem. Eng. Res., 44(6), 597 (2006)
  19. Pearman BP, Mohajeri N, Slattery DK, Hampton MD, Seal S, Cullen DA, Polym. Degrad. Stabil., 98(9), 1766 (2013)
  20. Hao JK, Jiang YY, Gao XQ, Xie F, Shao ZG, Yi BL, J. Membr. Sci., 522, 23 (2017)
  21. Zhu Y, Pei SP, Tang JK, Li H, Wang L, Yuan WZ, Zhang YM, J. Membr. Sci., 432, 66 (2013)
  22. Chang Z, Yan H, Tian J, Pan H, Pu H, Polymer Degradation and Stability, 138, 98-105(2017).
  23. Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290 (2018)
  24. Oh SH, Kwag AH, Lee DW, Lee MS, Lee DH, Park KP, Korean Chem. Eng. Res., 57(6), 768 (2019)