화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.10, 1786-1794, October, 2020
Preparation of nano-sized Mg-doped copper silicate materials using coal gangue as the raw material and its characterization for CO2 adsorption
E-mail:,
This work presents a simple method for the preparation of the Mg-doped nanocomposite copper silicates (Mgx-Cu1-x-SiO3) (x=0.25, 0.5, 0.75 and 0.9) using coal gangue waste as the silicon source for CO2 capture at low temperature. The as-prepared Mgx-Cu1-x-SiO3 was systemically characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller surface area analysis (BET). The results suggest that all Mgx-Cu1-x-SiO3 possess large surface areas, micropores and mesoporous structures composed of the agglomerates of small nanoparticles. They exhibit high CO2 adsorption capacity at 298.15 K under 1 bar, and that of Mg0.9-Cu0.1-SiO3 was the highest with the value of 16.73 cm3/g. The Freundlich isotherm model fits the CO2 adsorption isotherm well. Thermodynamic analysis indicates that the CO2 adsorption on Mg0.9-Cu0.1-SiO3 is exothermic (ΔH°<0), chaotic (ΔS°<0), and spontaneous (ΔG°<0). This work highlights the low-temperature adsorption behavior of silicate materials on CO2, which can provide some research basis for the utilization of silica in coal gangue.
  1. Yi C, Ma HQ, Zhu HG, Dong ZC, Su ZJ, Zhang YT, Chu Z, J. Build. Mater., 20, 134 (2017)
  2. Li YJ, Xing Y, Zhang X, Yan XP, J. China Coal Soc., 38, 1215 (2013)
  3. Yi C, Ma HQ, Chen HY, Wang JX, Shi J, Li ZH, Yu MK, Constr. Build. Mater., 187, 318 (2018)
  4. Zhou CC, Liu GJ, Wu D, Fang T, Wang R, Fan X, Chemosphere, 95, 193 (2014)
  5. Tang YB, Wang HE, Powder Technol., 323, 486 (2018)
  6. Zhou L, Zhou HJ, Hu YX, Yan S, Yang JL, J. Environ. Manage., 234, 245 (2019)
  7. Geng J, Zhou M, Zhang T, Wang W, Wang T, Zhou X, Wang X, Hou H, Mater. Struct., 50, 5 (2017)
  8. Gao YJ, Huang HY, Tang WJ, Liu XY, Yang XY, Zhang JB, Microporous Mesoporous Mater., 217, 210 (2015)
  9. Qian TT, Li JH, Adv. Powder Technol., 26(1), 98 (2015)
  10. Xiao J, Li FC, Zhong QF, Bao HG, Wang BJ, Huang JD, Zhang YB, Hydrometallurgy, 155, 118 (2015)
  11. Jamrunroj P, Wongsakulphasatch S, Maneedaeng A, Cheng CK, Assabumrungrat S, Powder Technol., 344, 208 (2019)
  12. Rahmani O, Junin R, Tyrer M, Mohsin R, Energy Fuels, 28(9), 5953 (2014)
  13. Sacco A, J. CO2 Util., 27, 22 (2018)
  14. Kaliyavaradhan SK, Ling TC, J. CO2 Util., 20, 234 (2017)
  15. Wang SX, Farrauto RJ, Karp S, Jeona JH, Erik T, J. CO2 Util., 27, 390 (2018)
  16. Alvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F, Chem. Rev., 117(14), 9804 (2017)
  17. Wu HD, Gao L, Jin HG, Li S, Appl. Energy, 203, 571 (2017)
  18. Creamer AE, Gao B, Environ. Sci. Technol., 50, 7276 (2016)
  19. Li D, Zhou J, Zhang Z, Li L, Tian Y, Lu Y, Qiao Y, Li J, Wen L, Carbon, 114, 496 (2017)
  20. Chen SJ, Zhu M, Fu Y, Huang YX, Tao ZC, Li WL, Appl. Energy, 191, 87 (2017)
  21. Yoshihiro K, Marie S, Akira E, Microporous Mesoporous Mater., 219, 125 (2016)
  22. Kim E, Hong S, Jang E, Lee JH, Kim JC, Choi N, Cho CH, et al., J. Mater. Chem. A, 5, 11246 (2017)
  23. Belmabkhout Y, Guillerm V, Eddaoudi M, Chem. Eng. J., 296, 386 (2016)
  24. Nandi S, Haldar S, Chakraborty D, Vaidhyanathan R, J. Mater. Chem. A, 5, 535 (2017)
  25. Du H, Ma L, Liu XY, Zhang F, Yang XY, Wu Y, Zhang JB, Energy Fuels, 32(4), 5374 (2018)
  26. Lee SC, Kim MJ, Kwon YM, Chae HJ, Cho MS, Park YK, Seo HM, Kim JC, Sep. Purif. Technol., 120, 214 (2019)
  27. Essaki K, Kato M, Uemoto H, J. Mater. Sci., 21, 5017 (2005)
  28. Li JJ, Hitch M, Power IM, Pan YY, Minerals, 8, 147 (2018)
  29. Li JJ, Hitch M, Miner. Eng., 128, 69 (2018)
  30. Hu YC, Liu WQ, Yang YD, Qu MY, Li HL, Chem. Eng. J., 359, 604 (2019)
  31. Xu HL, Cheng WG, Jin XZ, Wang GX, Lu HX, Wang HL, Chen DL, Fan BB, Hou TC, Zhang R, Ind. Eng. Chem. Res., 52(5), 1886 (2013)
  32. Seggiani M, Puccini M, Vitolo S, Int. J. Greenh. Gas. Control, 17, 25 (2013)
  33. Zhang S, Zhang Q, Wang HY, Ni YH, Zhu ZB, Int. J. Hydrog. Energy, 39(31), 17913 (2014)
  34. Ortiz-Landeros J, Gomez-Yanez C, Palacios-Romero LM, Lima E, Pfeiffer H, J. Phys. Chem. A, 116(12), 3163 (2012)
  35. Gauer C, Heschel W, J. Mater. Sci., 41(8), 2405 (2006)
  36. Chen Xiaoxiang, Xiong Zhuo, Qin Yadi, Gong Bengen, Tian Chong, Zhao Yongchun, Zhang Junying, Zheng Chuguang, Int. J. Hydrog. Energy, 41(30), 13077 (2016)
  37. Wu Y, Du H, Gao YJ, Liu XY, Yang TY, Zhao L, Yue XQ, Zhang S, Zhang JB, Fuel, 258, 116192 (2019)
  38. Gelb LD, Gubbins KE, Langmuir, 15(2), 305 (1999)
  39. Freundlich MF, J. Phys. Chem., 57, 355 (1906)
  40. Thiruvenkatachari R, Su S, An H, Yu XX, Prog. Energy Combust. Sci., 35(5), 438 (2009)
  41. Moradi M, Karimzadeh R, Moosavi ES, Fuel, 217, 467 (2018)
  42. Ye ZH, Chen d, Pan ZJ, Zhang GQ, Xia Y, Ding X, J. Nat. Gas. Sci. Eng., 31, 658 (2016)
  43. Ammendola P, Raganati F, Chirone R, Chem. Eng. J., 322, 302 (2017)
  44. Hauchhum L, Mahanta P, Int. J. Energy Environ. Eng., 5, 349 (2014)
  45. Raganati F, Alfe M, Gargiulo V, Chirone R, Ammendola P, Chem. Eng. Res. Des., 134, 540 (2018)
  46. Singh VK, Kumar EA, Mater. Today, 5, 23033 (2018)
  47. Dietemann M, Baillon F, Espitalier F, Calvet R, Accart P, Confetto SD, Greenhill-Hooper M, Chem. Eng. J., 215-216, 658 (2013)
  48. Oyama ST, Lee YK, J. Catal., 258(2), 393 (2008)
  49. Wang HY, Wang YY, Bai X, Yang H, Han JP, Lun N, Qi YX, Bai YJ, RSC Adv., 6, 105771 (2016)
  50. Zhang Y, Li YW, Dai YJ, Liu J, Xu YB, Ceram. Int., 44, 6626 (2018)
  51. Zhang Y, Li YW, Dai YJ, Ceram. Int., 44, 21365 (2018)
  52. Ren YP, Ding RY, Yue HR, Tang SY, Liu CJ, Zhao JB, Lin W, Liang B, Appl. Energy, 198, 250 (2017)
  53. Nied D, Rasmussen KE, L'Hopital E, Skibsted J, Lothen B, Cem. Concr. Res., 79, 323 (2016)
  54. Borchert H, Shevehenko EV, Robert A, Mekis I, Kornowski A, Grubel G, Weller H, Langmuir, 21(5), 1931 (2005)
  55. Li T, Senesi AJ, Lee B, Chem. Rev., 116(18), 11128 (2016)
  56. Liu HH, Zhang HL, Xu HB, Lou TP, Sui ZT, Zhang Y, Nanoscale, 10, 5246 (2018)
  57. Liu HH, Zhang HL, Hu YY, Xu HB, Lou TP, Sui ZT, Zhang Y, J. Alloy. Compd., 778, 803 (2019)
  58. Roselin LS, Chiu HW, J. Saudi. Chem. So., 22, 692 (2018)
  59. Yuan JJ, Zhu PX, Noda D, Jin RH, Beilstein J. Nanotechnol., 4, 793 (2013)
  60. Rahmani S, Rezaei M, Meshkani F, J. Ind. Eng. Chem., 20(4), 1346 (2014)
  61. Gunathilake C, Dassanayake RS, Abidi N, Jaroniec M, J. Mater. Chem. A, 4, 4808 (2016)
  62. Ghods B, Rezaei M, Meshkani F, Ceram. Int., 42, 6883 (2016)
  63. Klinthong W, Huang CH, Tan CS, Ind. Eng. Chem. Res., 55(22), 6481 (2016)
  64. Liu XY, Yang XY, Du H, Wu Y, Zhang XS, Zhang JB, Powder Technol., 333, 138 (2018)
  65. Mason JA, Sumida K, Herm ZR, Krishna R, Long JR, Energy Environ. Sci., 4, 3030 (2011)
  66. Du YH, Du ZJ, Zou W, Li HQ, Mi JG, Zhang C, J. Colloid Interface Sci., 409, 123 (2013)
  67. Lopez-Aranguren P, Builes S, Fraile J, Vega LF, Domingo C, Ind. Eng. Chem. Res., 53(40), 15611 (2014)
  68. Zheng YN, Li QZ, Yuan CC, Tao QL, Zhao Y, Zhang GY, Liu JF, Qi G, Fuel, 230, 172 (2018)
  69. Chen L, Zuo L, Jiang ZX, Jiang S, Liu KY, Tang JQ, Zhang LC, Chem. Eng. J., 361, 559 (2019)
  70. Schindler BJ, LeVan MD, Carbon, 46, 644 (2008)
  71. Deng H, Yi HH, Tang XL, Yu QF, Ning P, Yang LP, Chem. Eng. J., 188, 77 (2012)
  72. Hu HY, Zhang TW, Wiggins-Camacho JD, Ellis GS, Lewan MD, Zhang XL, Mar. Pet. Geol., 59, 114 (2015)
  73. Zhang B, Luan LY, Gao RT, Li F, Li YJ, Wu T, Colloids Surf. A: Physicochem. Eng. Asp., 50, 399 (2017)