화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.10, 1690-1698, October, 2020
Effect of reducibility on the performance of Co-based catalysts for the production of high-calorie synthetic natural gas
E-mail:,
Co-based catalysts were developed for the production of high-calorie synthetic natural gas. The Co reduction in Al2O3- and SiO2-supported catalysts prepared with different Co loading, and their catalytic properties for highcalorie methanation were investigated. The CO conversion of the Co/SiO2 catalysts was superior to that of the Co/ Al2O3 with the same Co loading, due to their better reducibility at 400 °C. The activities of both the Al2O3 and SiO2- supported catalysts increased with Co loading, while the growth of hydrocarbon chains decreased as the Co loading increased. As the reduction temperature increased, crystallite size of Co increased in 10 Co/SiO2, resulting in decrease of CO conversion and increase of C2+ selectivity. The highest CO conversion (98.7%) was obtained over 10Co/SiO2 reduced at 400 °C. Moreover, the heating value of the product gas (10,405 kcal/Nm3) exceeded the standard heating value without requiring a high reduction temperature (700 °C) or a noble metal (Ru).
  1. Davis SJ, Caldeira K, Matthews HD, Science, 329(5997), 1330 (2010)
  2. Jo SB, Chae HJ, Kim TY, Lee CH, Oh JU, Kang SH, Kim JW, Jeong M, Lee SC, Kim JC, Catal. Commun., 117, 74 (2018)
  3. Lee YH, Kim H, Choi HS, Lee DW, Lee KY, Korean J. Chem. Eng., 32(11), 2220 (2015)
  4. Lee YH, Lee DW, Lee KY, J. Mol. Catal. A-Chem., 425, 190 (2016)
  5. Czekaj L, Loviat F, Raimondi F, Wambach J, Biollaz S, Wokaun A, Appl. Catal. A: Gen., 329, 68 (2007)
  6. Guo CL, Wu YY, Qin HY, Zhang JL, Fuel Process. Technol., 124, 61 (2014)
  7. Hu DC, Gao JJ, Ping Y, Jia LH, Gunawan P, Zhong ZY, Xu GW, Gu FN, Su FB, Ind. Eng. Chem. Res., 51(13), 4875 (2012)
  8. Kester KB, Zagli E, Falconer JL, Appl. Catal., 22, 311 (1986)
  9. Sehested J, Dahl S, Jacobsen J, Rostrup-Nielsen JR, J. Phys. Chem. B, 109(6), 2432 (2005)
  10. Kopyscinski J, Schildhauer TJ, Biollaz SMA, Fuel, 89(8), 1763 (2010)
  11. Ronsch S, Schneider J, Matthischke S, Schluter M, Gotz M, Lefebvre J, Prabhakaran P, Bajohr S, Fuel, 166, 276 (2016)
  12. Davis BH, Ind. Eng. Chem. Res., 46(26), 8938 (2007)
  13. den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Froseth V, Holmen A, de Jong KP, J. Am. Chem. Soc., 131(20), 7197 (2009)
  14. Wang ZJ, Yan Z, Liu CJ, Goodman, ChemCatChem, 3, 551 (2011)
  15. Weststrate CJ, van de Loosdrecht J, Niemantsverdriet JW, J. Catal., 342, 1 (2016)
  16. Inui T, Sakamoto A, Takeguchi T, Ishigaki Y, Ind. Eng. Chem. Res., 28, 427 (1989)
  17. Ishigaki Y, Uba M, Nishida S, Inui T, Appl. Catal., 47, 197 (1989)
  18. Oh JH, Bae JW, Park SJ, Khanna PK, Jun KW, Catal. Lett., 130(3-4), 403 (2009)
  19. Park KS, Saravanan K, Park SJ, Lee YJ, Jeon KW, Bae JW, Catal. Sci. Technol., 7, 4079 (2017)
  20. Reuel RC, Bartholomew CH, J. Catal., 85, 78 (1984)
  21. Salazar-Contreras HG, Martinez-Hernandez A, Boix AA, Fuentes GA, Torres-Garcia E, Appl. Catal. B: Environ., 244, 414 (2019)
  22. Zhang JL, Chen JG, Ren J, Sun YH, Appl. Catal. A: Gen., 243(1), 121 (2003)
  23. Zhang Y, Nagamori S, Hinchiranan S, Vitidsant T, Tsubaki N, Energy Fuels, 20(2), 417 (2006)
  24. Armstrong GT, Jobe TL, Heating values of natural gas and its components, U.S. Department of Commerce, Washington, D.C. (1982).
  25. Galvis HMT, de Jong KP, ACS Catal., 3, 2130 (2013)
  26. Li WH, Nie XW, Jiang X, Zhang AF, Ding FS, Liu M, Liu ZM, Guo XW, Song CS, Appl. Catal. B: Environ., 220, 397 (2018)
  27. Ullah S, Lovell EC, Wong RJ, Tan TH, Scott J, Amal R, ACS Sustain. Chem. Eng., 8, 5056 (2020)
  28. Ma WP, Ding YJ, Lin LW, Ind. Eng. Chem. Res., 43(10), 2391 (2004)
  29. Khodakov AY, Bechara R, Griboval-Constant A, Appl. Catal. A: Gen., 254(2), 273 (2003)
  30. Martinez A, Lopez C, Marquez F, Diaz I, J. Catal., 220(2), 486 (2003)
  31. Medina C, Garcia R, Reyes P, Fierro JLG, Escalona N, Appl. Catal. A: Gen., 373(1-2), 71 (2010)