화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.9, 441-446, September, 2020
Zinc Oxide Nanostructured Thin Film as an Efficient Photoanode for Photoelectrochemical Water Oxidation
E-mail:
Synthesizing nanostructured thin films of oxide semiconductors is a promising approach to fabricate highly efficient photoelectrodes for hydrogen production via photoelectrochemical (PEC) water splitting. In this work, we investigate the feasibility as an efficient photoanode for PEC water oxidation of zinc oxide (ZnO) nanostructured thin films synthesized via a simple method combined with sputtering Zn metallic films on a fluorine-doped tin oxide (FTO) coated glass substrate and subsequent thermal oxidation of the sputtered Zn metallic films in dry air. Characterization of the structural, optical, and PEC properties of the ZnO nanostructured thin film synthesized at varying Zn sputtering powers reveals that we can obtain an optimum ZnO nanostructured thin film as PEC photoanode at a sputtering power of 40 W. The photocurrent density and optimal photocurrent conversion efficiency for the optimum ZnO nanostructured thin film photoanode are found to be 0.1 mA/cm2 and 0.51 %, respectively, at a potential of 0.72 V vs. RHE. Our results illustrate that the ZnO nanostructured thin film has promising potential as an efficient photoanode for PEC water splitting.
  1. Lewis NS, Nocera DG, Proc. Natl. Acad. Sci. U. S. A., 103, 15729 (2006)
  2. Kamat PV, J. Phys. Chem. C, 111, 2834 (2007)
  3. Winter CJ, Int. J. Hydrog. Energy, 34(14), S1 (2009)
  4. Kudo A, Miseki Y, Chem. Soc. Rev., 38, 253 (2009)
  5. Osterloch FE, Chem. Soc. Rev., 42, 2294 (2013)
  6. Chen XB, Shen SH, Guo LJ, Mao SS, Chem. Rev., 110(11), 6503 (2010)
  7. Yang Y, Xu D, Wu Q, Diao P, Sci. Rep., 6, 30158 (2016)
  8. Liu Y, Gu Y, Yan X, Kang Z, Lu S, Sun Y, Zhang Y, Nano Res., 8, 2891 (2015)
  9. Wang MY, Sun L, Lin ZQ, Cai JH, Xie KP, Lin CJ, Energy Environ. Sci., 6, 1211 (2013)
  10. Wheeler DA, Wang GM, Ling YC, Li Y, Zhang JZ, Energy Environ. Sci., 5, 6682 (2012)
  11. Kang Z, Gu YS, Yan XQ, Bai ZM, Liu YC, et al., Biosens. Bioelectron., 64, 499 (2015)
  12. Kang Z, Yan XQ, Wang YF, Bai ZM, Liu YC, et al., Sci. Rep., 5, 7882 (2015)
  13. Fujishima A, Honda K, Nature, 238, 37 (1972)
  14. Srikant V, Clarke DR, J. Appl. Phys., 83, 5447 (1998)
  15. Hu J, Odom TW, Lieber CM, Accounts Chem. Res., 32, 435 (1999)
  16. Beermann N, Vayssieres L, Lindquist SE, Hagfeldt A, J. Electrochem. Soc., 147(7), 2456 (2000)
  17. Hung NL, Kim H, Kim D, Korean J. Mater. Res., 25(7), 358 (2015)
  18. Zhang R, Yin PG, Wang N, Guo L, Solid State Sci., 11, 865 (2009)
  19. Tauc J, Grigorovici R, Vancu A, Phys. Status Solidi B, 15, 627 (1966)
  20. Sinsermsuksakul P, Heo J, Noh W, Hock AS, Gordon RG, Adv. Eng. Mater., 1, 1116 (2001)
  21. Hisatomi T, Kubota J, Domen K, Chem. Soc. Rev., 43, 7520 (2014)
  22. Sawyer DT, Sobkowiak AJ, Roberts J, Electrochemistry for Chemists, p.196, 2nd ed., John Wiley & Sons, New York (1995).
  23. Park JH, Kim HJ, Korean J. Mater. Res., 30(5), 239 (2020)