화학공학소재연구정보센터
Clean Technology, Vol.26, No.3, 186-195, September, 2020
활성탄에 의한 Acid Black과 Quinoline Yellow의 흡착특성 및 파라미터
Adsorption Characteristics and Parameters of Acid Black and Quinoline Yellow by Activated Carbon
E-mail:,
초록
활성탄에 의한 Acid black(AB)과 Quinoline yellow(QY)의 등온흡착과 속도실험을 염료의 초기농도, 접촉 시간, 온도 및 pH를 흡착변수로 수행하여 등온흡착과 동력학적, 열역학적 파라미터에 대해 조사하였다. 흡착평형자료는 Freundlich 등온흡착식에 잘 맞았으며, 계산된 Freundlich 분리계수 값으로부터 활성탄이 AB와 QY를 효과적으로 제거할 수 있다는 것을 알았다. 속도실험 데이터는 흡착공정은 유사 이차 반응속도식이 오차율 10% 이내로 잘 맞았다. 입자 내 확산식에 대한 결과는 두단계의 직선으로 구분되었다. 입자내 확산을 나타내는 두 번째 직선의 기울기가 경계층 확산의 기울기보다 작아서 입자 내 확산이 속도지배단계인 것을 확인하였다. 열역학 실험으로부터 AB와 QY의 활성화 에너지는 각각 19.87 kJ mol-1, 14.17 kJ mol-1였고 물리흡착공정(5 ~ 40 kJ mol-1)에 해당하였다. 활성탄에 의한 AB와 QY의 흡착반응의 자유에너지 변화는 298 ~ 318 K 범위에서 모두 음의 수치를 나타냈기 때문에 흡착반응이 자발적이었으며 온도가 증가할수록 자유에너지 값이 감소하였기 때문에 자발성이 더 높아졌다 . pH 변화실험 결과, 활성탄에 의한 AB와 QY는 해리하여 발생한 음이온의 영향으로 pH 3에서 가장 높은 흡착제거율을 나타냈으며, 흡착메카니즘은 정전기적 인력이었다.
The isothermal adsorption, dynamic, and thermodynamic parameters of Acid black (AB) and Quinoline yellow (QY) adsorption by activated carbon were investigated using the initial concentration, contact time, temperature, and pH of the dyes as adsorption parameters. The adsorption equilibrium data fits the Freundlich isothermal adsorption model, and the calculated Freundlich separation factor values found that activated carbon can effectively remove AB and QY. Comparing the kinetic data showed that the pseudo second order model was within 10% error in the adsorption process. The intraparticle diffusion equation results were divided into two straight lines. Since the slope of the intraparticle diffusion line was smaller than the slope of the boundary layer diffusion line, it was confirmed that intraparticle diffusion was the rate-controlling step. The thermodynamic experiments indicated that the activation energies of AB and QY were 19.87 kJ mol-1 and 14.17 kJ mol-1, which corresponded with the physical adsorption process (5 ~ 40 kJ mol-1). The adsorption reaction was spontaneous because the free energy change in the adsorption of AB and QY by activated carbon was negative from 298 to 318 K. As the temperature increased, the free energy value decreased resulting in higher spontaneity. Adsorption of AB and QY by activated carbon showed the highest adsorption removal rate at pH 3 due to the effect of anions generated by dissociation. The adsorption mechanism was electrostatic attraction.
  1. Liang J, Ning XA, Sun J, Song J, Hong X, Cai H, J. Clean Prod., 204, 12 (2018)
  2. Jung KW, Choi BH, Lee SY, Ahn KH, Lee YJ, J. Ind. Eng. Chem., 67, 316 (2018)
  3. Zhang S, Shi Z, Wang J, Food Chem., 173, 449 (2015)
  4. Shin J, Suh SS, Choi MK, Clean Technol., 20(1), 22 (2014)
  5. Lee JJ, Clean Technol., 25(1), 56 (2019)
  6. Isah AU, Abdulraheem G, Bala S, Muhammad S, Abdullahi M, Int. Biodeterior. Biodegrad., 102, 265 (2015)
  7. Edison D, Ramesh KS, Sivaramkumar MS, Velmurugan R, Int. J. Trend Res. Dev., 3(4), 22 (2016)
  8. Lee JJ, Clean Technol., 26(1), 30 (2020)
  9. Fu JW, Zhu JH, Wang ZW, Wang YH, Wang SM, Yan RQ, Xu Q, J. Colloid Interface Sci., 542, 123 (2019)
  10. Hamza W, Dammak N, Hadjltaief HB, Eloussaief M, Benzina M, Ecotox. Environ. Safe., 163, 365 (2019)
  11. Afshin S, Mokhtari SA, Vosoughi M, Sadeghi H, Rashtbari Y, Data Brief, 21, 1008 (2018)
  12. Lee JJ, Appl. Chem. Eng., 28(2), 206 (2017)
  13. Belbachir I, Makhoukhi B, J. Taiwan Inst. Chem. Eng., 75, 105 (2017)
  14. de Souza TNV, de Carvalho SML, Vieira MGA, da Silva MGC, Brasil DDB, Appl. Surf. Sci., 448, 662 (2018)
  15. Kaur S, Rani S, Mahajan RK, Asif M, Gupta VK, J. Ind. Eng. Chem., 22, 19 (2015)
  16. Lee EH, Lee KY, Kim KW, Kim HJ, Kim IS, Chung DY, Moon JK, Choi JW, J. Nucl. Fuel Cycle Waste Technol., 14(3), 223 (2016)
  17. Al-Kadhi NS, Egypt. J. Aquat. Res., 45(3), 231 (2019)
  18. Gopinathan R, Bhowal A, Garlapati C, J. Chem. Thermodyn., 107, 182 (2017)
  19. Hasani S, Ardejani FD, Olya ME, Korean J. Chem. Eng., 34(8), 2265 (2017)
  20. Marrakchi F, Ahmed MJ, Khanday WA, Asif M, Hameed BH, J. Taiwan Inst. Chem. Eng., 71, 47 (2017)