화학공학소재연구정보센터
Renewable Energy, Vol.154, 767-773, 2020
Gold nanoparticles mixed multiwall carbon nanotubes, supported on graphene nano-ribbons (Au-NT-G) as an efficient reduction electrode for Polymer Electrolyte Membrane fuel cells (PEMFC)
This research reports fabrication of three Polymer Electrolyte Membrane fuel cells (PEMFC) using composite of gold nanoparticles and nanotube graphene by varying concentration of Gold nanoparticles. The outer most layer of multiwall carbon nanotubes is un-zipped and nano ribbons of graphene are developed to attain a durable electrode. Moreover, the addition of gold nanoparticles adds benefit of better conductance over usual platinum electrodes. The effect of changing gold concentration on properties of composite material as well as fuel cell performance is investigated. The presence of gold nanoparticles and graphene nano-ribbons attached to carbon nanotubes are identified using SEM, TEM, and Raman analysis. Cyclic voltammetry analysis has showed that increase in concentration of gold nano particles improves the performance of fuel cell. EIS analysis reveled that the polarization resistance decreased by increasing the Au concentration. Thermal Gravimetric Analysis proved the thermal stability of composite material. Maximum power density of 242.29 mWcm(-2) is achieved for the highest concentration of Gold nanoparticles. (C) 2020 Elsevier Ltd. All rights reserved.