화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.124, No.18, 3590-3600, 2020
Investigating the (Poly)Radicaloid Nature of Real-World Organic Compounds with DFT-Based Methods
Recent advances in the synthesis of stable organic (open-shell) polyradicaloids have opened their application as active compounds for emerging technologies. These systems typically exhibit small energy differences between states with different spin multiplicities, which are intrinsically difficult to calculate by theoretical methods. We thus apply here some DFT-based variants (FT-DFT, SF-DFT, and SF-TDDFT) on a test set of large and real-world molecules, as test systems for which such energy differences are experimentally available, also comparing systematically with RAS-SF results to infer if shortcomings of previous DFT applications are corrected. Additionally, we explore the spin-spin contribution to the ZFS tensor, of high interest for EPR spectroscopy, and derive the spatial extent of the corresponding (photoexcited) triplet state.