화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.8, 413-420, August, 2020
Lu3Al5-xGaxO12:Ce3+,Cr3+ 형광체의 결정구조 분석 및 잔광성 발광 특성
Crystal Structure Refinement and Persistent Luminescence Properties of Lu3Al5-xGaxO12:Ce3+,Cr3+ Phosphors
E-mail:
Lu3Al5-xGaxO12:Ce3+,Cr3+ powders are prepared using a solid-state reaction method. To determine the crystal structure, Rietveld refinement is performed. The results indicate that Ga3+ ions preferentially occupied tetrahedral rather than octahedral sites. The lattice constant linearly increases, obeying Vegard’s law, despite the strong preference of Ga3+ for the tetrahedral sites. Increasing x led to a blue-shift of the Ce3+ emission band in the green region and a change in the emission intensity. Persistent luminescence is observed from the powders prepared with x = 2.3, occurring through a trapping and detrapping process between Ce3+ and Cr3+ ions. The longest persistent luminescence is achieved for x = 2; its lifetime is at least 30 min. The findings are explained using crystal structure refinement, crystal field splitting, optical band gap, and electron trapping mechanism.
  1. Saito M, Adachi N, Kondo H, Opt. Express, 15, 1621 (2007)
  2. Xu J, Tanabe S, Sontakke AD, Ueda J, Appl. Phys. Lett., 107, 081903 (2015)
  3. Lin X, Zhang R, Tian X, Li Y, Du B, Nie J, Li Z, Chen L, Ren J, Qiu J, Hu Y, Adv. Opt. Mater., 6, 170116 (2018)
  4. Li H, Yin S, Wang Y, Sato T, RSC Adv., 2, 3234 (2012)
  5. Sun HC, Pan LK, Piao XQ, Sun Z, J. Colloid Interface Sci., 416, 81 (2014)
  6. Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y, J. Electrochem. Soc., 143(8), 2670 (1996)
  7. Zheng M, Chen X, Lei B, Xiao Y, Liu R, Zhang H, Dong H, Liu Y, Liu X, ECS Solid State Lett., 2, R19 (2013)
  8. He H, Fu RL, Song XF, Li R, Pan ZW, Zhao XR, Deng ZH, Cao YG, J. Electrochem. Soc., 157(3), J69 (2010)
  9. Li Y, Li YY, Sharafudeen K, Dong GP, Zhou SF, Ma ZJ, Peng MY, Qiu JR, J. Mater. Chem. C, 2, 2019 (2014)
  10. Yu N, Liu F, Li X, Pan Z, Appl. Phys. Lett., 95, 231110 (2009)
  11. Setlur AA, Srivastava AM, Opt. Mater., 29, 1647 (2007)
  12. Schlotter P, Schmidt R, Schneider J, Appl. Phys. A-Mater. Sci. Process., 64, 417 (1997)
  13. Nakamura S, Fasol G, The Blue Laser Diode: GaN Based Light Emitters and Lasers, p. 216, Springer, Berlin (1997).
  14. Holloway WW, Kestigian M, J. Opt. Soc. Am., 59, 60 (1969)
  15. Xu J, Ueda J, Tanabe S, J. Mater. Chem. C, 4, 4380 (2016)
  16. Ueda J, Kuroishi K, Tanabe S, Appl. Phys. Lett., 104, 10904 (2014)
  17. Ueda J, Dorenbos P, Bos AJJ, Kuroishia K, Tanabea S, J. Mater. Chem. C, 3, 5642 (2015)
  18. Xu J, Ueda J, Kuroishi K, Tanabe S, Scr. Mater., 102, 47 (2015)
  19. Boiko V, Zeler J, Markowska M, Dai Z, Gerus A, Bolek P, Zych E, Hreniak D, J. Rare Earth, 37, 1200 (2019)
  20. Ueda J, Miyano S, Tanabe S, ACS Appl. Mater. Interfaces, 10, 20652 (2018)
  21. Yuan L, JIn Y, Zhu D, Mou Z, Xie G, Hu Y, ACS Sustainable Chem. Eng., 3, 6543 (2020)
  22. Laguta V, Zorenko Y, Gorbenko V, Iskaliyeva A, Zagorodniy Y, Sidletskiy O, Bilski P, Twardak A, Nikl M, J. Phys. Chem. C, 120, 24400 (2016)
  23. Song Z, Xia Z, Liu Q, J. Phys. Chem. C, 122, 3567 (2018)
  24. Kamada K, Endo T, Tsutumi K, Cryst. Growth Des., 11, 4484 (2011)
  25. Vrubel II, Polozkov RG, Shelykh IA, Khanin VM, Rodnyi PA, Ronda CR, Cryst. Growth Des., 17, 1863 (2017)
  26. Ahn W, Kim YJ, Ceram. Int., 43, S412 (2017)
  27. Xu J, Wang J, Gong Y, Ruan X, LiuZ, Hu B, Liu B, Li H, Wang X, Du B, J. European Ceram. Soc., 38, 343 (2018)
  28. Rathaiah M, Kucera M, Prusa P, Beitlerova A, Nikl M, Opt. Mater., 91, 321 (2019)
  29. Kim J, Kim YJ, J. Korean Ceram. Soc., 57, 85 (2020)
  30. Kim J, Lee CK, Kim YJ, Opt. Mater., 104, 109944 (2020)
  31. Xu YN, Ching WY, Phys. Rev. B, 59, 10530 (1999)
  32. Marezio M, Remeika JP, Dernier PD, Acta Crystallogr. Sect. B-Struct. Sci., 24, 1670 (1968)
  33. Nakatsuka A, Yoshiasa A, Yamanaka T, Acta Crystallogr. Sect. B-Struct. Sci., 55, 266 (1999)
  34. Burns RG, Geochim. Cosmochim. Acta, 39, 857 (1975)