화학공학소재연구정보센터
International Journal of Energy Research, Vol.44, No.7, 5477-5487, 2020
Thermal runaway behavior and features of LiFePO4/graphite aged batteries under overcharge
In this paper, the overcharge tests of 25 Ah LiFePO4/graphite batteries are conducted in an open environment and the overcharge-to-thermal-runaway characteristics are studied. The effects of current rates (C-rates: 2C, 1C, 0.5C, and 0.3C) and states of health (SOHs: 100%, 80%, 70%, and 60%) on thermal runaway features are discussed in detail. The overcharge process can be summarized into five stages based on the experimental phenomena (C-rate >= 1 and SOH >= 80%): expansion, fast venting after safety valve rupture, slow venting, intense jet smoke, and explosion, while the battery cannot explode at lower C-rates and SOHs. The maximum pressure increases with the increase in C-rate or SOH. There are five obvious inflection points in the voltage curve during overcharge process. The V-1 (point B) of aged battery, corresponding to lithium plating on the anode, changes little with C-rates. It is slightly lower than that of the new battery. A sharp drop in voltage (point E) is probably due to the internal short circuit (ISC), caused by the local melting and rupture of the separator. It takes more than 2 minutes from the moment of ISC to thermal runaway regardless of the SOH, indicating that there are a few minutes to take safety measures if the voltage is an indication parameter. The onset temperature of thermal runaway decreases first and then increases as the SOH decreases from 100% to 60% during 1C constant overcharge tests. These results can provide guidance for the thermal management of the whole battery life cycle and the reuse of retired batteries.