화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.104, No.5, 2229-2241, 2020
Rapid environmental change shapes pond water microbial community structure and function, affecting mud crab (Scylla paramamosain) survivability
The aquatic microbial community is sensitive to environmental change; however, the impacts of those changes combined with disease outbreaks affecting S. paramamosain are unknown. Thus, from March to October, we explored the interaction between aquacultural environmental conditions and microbial composition and function in open-air aquaculture ponds containing S. paramamosain in Southern China. The microbial community structure was significantly positively correlated with microbial community function. The environment variables such as temperature and salinity during May and June changed more quickly compared with other periods, resulting changes in the structure and function of the microbial community affected S. paramamosain survivability, with higher crab mortality observed from May to June compared with other periods. These included changes in the relative abundance of Microtrichales, Synechococcales, Rhodobacterales, Chitinophagales, and SAR11_clade, and corresponding functions associated with glycolysis and/or gluconeogenesis, porphyrin and chlorophyll metabolism, photosynthetic proteins, and transcription factors. These changes could impact S. paramamosain mortality and be used to evaluate the health status of the ponds. Though the environment variables during July~October changed slowly comparing to May and June, the ponds microflora changed which benefit S. paramamosain survivability with correspondingly low S. paramamosain mortality. Therefore, rapid environmental change alters the structure and function of the aquatic microflora, increasing S. paramamosain mortality.