화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.4, 423-428, August, 2020
Clostridium autoethanogenum을 이용한 합성가스 발효에 대한 중금속의 영향
Effect of Heavy Metal on Syngas Fermentation Using Clostridium autoethanogenum
E-mail:
초록
이 연구에서는 합성가스를 유일한 탄소원으로 사용하는 Clostridium autoethanogenum 배양에서 배지 성분 중 금속이온의 농도가 균주 성장과 대사산물 생산에 미치는 영향을 조사하였다. C. autoethanogenum 배양에 사용되는 기본 배지구성 성분의 금속이온 종류 중 molybdenum, nickel, cobalt를 조사 대상으로 선정하여 이 성분들의 농도를 달리하였을 때 균주 성장과 에탄올, 아세트산 생산에 미치는 영향을 확인하였다. Molybdenum은 0, 0.001, 0.01, 0.1 g/L농도를 시험하였으며 0.001 g/L에서 에탄올 생산량이 약간 증가하는 경향을 보였지만 시험한 농도 범위 내에서 뚜렷한 영향이 관찰되지 않았다. Nickel은 0, 0.001, 0.01, 0.1 g/L의 농도 범위에서 균주 성장과 에탄올 생산에 미치는 영향을 관찰하였으며, 0.01 g/L 농도에서 에탄올 생산농도가 기본 배지 농도인 0.1 g/L에서보다 26% 증가되는 것을 확인하였다. Cobalt는 0, 0.018, 0.18, 1.8 g/L 농도 범위에서 균주 성장과 에탄올 생산에 미치는 영향을 분석하였으며, 기본 배지 조건인 0.18 g/L의 이상의 농도에서는 균주 성장이 약간 저해되는 현상이 관찰되었다. 결과적으로 연구에 사용된 세 가지 금속이온 성분 중 cobalt는 배지 내 성분 농도에 따른 에탄올 생산농도 향상을 이루지 못하였으나, molybdenum, nickel은 기본 배지 내 일반적인 농도의 1/10을 사용함으로써 에탄올 생산농도 향상을 이룰 수 있었다.
In this work, we investigated the effect of the concentration of medium components on microbial growth and ethanol production in order to improve ethanol productivity in the Clostridium autoethanogenum culture process using syngas as a sole carbon source. Molybenum, nickel and cobalt (as heavy metal ions) were selected as examined components, and the effects of components concentration on the cell growth and ethanol production was examined. Among molybdenum concentrations of 0, 0.001, 0.01 and 0.1 g/L. a slight increase in ethanol production was observed at 0.001 g/L, but significant differences in the microbial growth and ethanol production were not observed in the examined concentration range. In the case of nickel concentration of 0, 0.001, 0.01 and 0.1 g/L, the change in the microbial growth and ethanol production was investigated, and it was found that the ethanol production using 0.001 g/L increased by 26% compared to that of using the basal medium concentration (0.01g/L). The effect of cobalt concentrations (0, 0.018, 0.18 and 1.8 g/L) on the microbial growth and ethanol production was also investigated, and the inhibition of microbial growth was observed when the cobalt usage was over 0.18 g/L. In conclusion, cobalt did not show any further improvement of ethanol production by changing concentration, however, molybdenum and nickel showed increases in the produced ethanol concentration compared to that of using 1/10 times of the basal medium concentration.
  1. Sun X, Atiyeh HK, Huhnke RL, Tanner RS, Bioresour. Technol. Rep., 7, 100279 (2019)
  2. Park SE, Ahn BH, Kim YK, Bioresour. Technol. Rep., 6, 237 (2019)
  3. Xu HJ, Liang CY, Yuan ZH, Xu JL, Hua Q, Guo Y, Enzyme Microb. Technol., 101, 24 (2017)
  4. Di Donato P, Finore I, Poli A, Nicolaus B, Lama L, J. Clean Prod., 233, 1410 (2019)
  5. Liu C, Luo G, Wang W, He YF, Zhang RH, Liu GQ, Fuel, 224, 537 (2018)
  6. Pardo-Planas O, Atiyeh HK, Phillips JR, Aichele CP, Mohammad S, Bioresour. Technol., 245, 925 (2017)
  7. Jack J, Lo J, Maness PC, Ren ZJ, Biomass Bioenerg., 124, 95 (2019)
  8. Chen J, Daniell J, Griffin D, Li X, Henson MA, Biochem. Eng. J., 129, 64 (2018)
  9. Singla A, Verma D, Sarma P, Bioresour. Technol., 172C, 41 (2014)
  10. Cotter JL, Chinn MS, Grunden AM, Enzyme Microb. Technol., 44(5), 281 (2009)
  11. Guo Y, Xu JL, Zhang Y, Xu HJ, Yuan ZH, Li D, Bioresour. Technol., 101(22), 8784 (2010)
  12. Saxena J, Tanner R, World J. Microb. Biotechnol., 28, 1553 (2012)
  13. Najafpour G, Younesi H, Enzyme Microb. Technol., 38(1-2), 223 (2006)
  14. Heiskanen H, Virkajarvi I, Viikari L, Enzyme Microb. Technol., 41(3), 362 (2007)
  15. Abubackar HN, Bengelsdorf FR, Duerre P, Veiga MC, Kennes C, Appl. Energy, 169, 210 (2016)
  16. Im HR, An TG, Park SE, Kim YK, Appl. Chem. Eng., 30(6), 681 (2019)
  17. Abubackar HN, Veiga MC, Kennes C, Bioresour. Technol., 253, 227 (2018)
  18. Zabihi R, Mowla D, Karimi G, Setoodeh P, J. Environ. Chem. Eng., 7, 102835 (2019)
  19. Abubackar HN, Veiga MC, Kennes C, Bioresour. Technol., 186, 122 (2015)
  20. Arslan K, Bayar B, Abubackar HN, Veiga MC, Kennes C, Bioresour. Technol., 292, 121941 (2019)
  21. Kundiyana DK, Huhnke RL, Maddipati P, Atiyeh HK, Wilkins MR, Bioresour. Technol., 101(24), 9673 (2010)
  22. Phillips JR, Atiyeh HK, Tanner RS, Torres JR, Saxena J, Wilkins MR, Huhnke RL, Bioresour. Technol., 190, 114 (2015)
  23. Sun X, Atiyeh HK, Zhang HL, Tanner RS, Huhnke RL, Appl. Energy, 236, 1269 (2019)
  24. Ammam F, Tremblay PL, Lizak D, Zhang T, Sporomusa ovata, Biotechnol. Biofuels, 9, 163 (2016).
  25. Nimbalkar PR, Khedkar MA, Parulekar RS, Chandgude VK, Sonawane KD, Chavan PV, Bankar SB, ACS Sustain. Chem. Eng., 6, 9304 (2018)
  26. Andreesen R, Ljungdahl LG, J. Bacteriol., 116, 867 (1973)
  27. Yamamoto I, Saiki T, Liu SM, Ljungdahl LG, J. Biol., 258, 1826 (1983)
  28. Hassen A, Saidi N, Cherif M, Boudabous A, Bioresour. Technol., 64(1), 7 (1998)
  29. Saxena J, Tanner R, J. Ind. Microbiol. Biotechnol., 38, 513 (2011)
  30. Terlesky KC, Barber MJ, Aceti DJ, Ferry JG, J. Biol. Chem., 262, 15392 (1987)
  31. Paulo LM, Ramiro-Garcia J, Van Mourik S, Stams AJM, Sousa DZ, Front. Microbiol., 8, 1341 (2017)
  32. Kundiyana DK, Huhnke RL, Wilkins MR, Bioresour. Technol., 102(10), 6058 (2011)