화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.4, 416-422, August, 2020
친환경 생분해성 PLA/PBAT/HCO 블랜드 필름 제조 및 물리적 특성
Preparation and Physical Properties of Eco-Friendly Biodegradable PLA/PBAT/HCO Blended Films
E-mail:
초록
본 연구에서는 생분해성 고분자인 poly(latic acid) (PLA), poly(butylene adipate-co-terephthalate) (PBAT)와 첨가제로 hydrogenated castor oil (HCO) powder를 이용하여 친환경 생분해성 소재를 제조하였다. 제조한 PLA/PBAT/HCO 블렌드필름의 특성은 scanning electron microscope (SEM)와 fourier-transform infrared spectroscopy (FT-IR)를 이용하여 분석하였다. SEM 분석 결과 HCO가 첨가된 PLA/PBAT (8 : 2) 블렌드 필름은 12-hydroxy stearic acid (12HSA)와 cellulose가 첨가된 필름과 비교했을 때, 안정적인 표면을 나타내었다. FT-IR 결과는 PLA/PBAT 블렌드 필름에서 HCO의 특성 피크의 나타냈으며, HCO 함량이 0에서 0.2 wt%까지 증가함에 따라 intensity가 증가함을 알 수 있었다. 또한, 제조한 PLA/PBAT/HCO 블렌드 필름의 물리적 특성, 열 분석을 수행하였다. 그 결과 HCO 첨가에 의해 물리적 특성과 열 안정성이 3배 이상 향상되었음을 확인하였다. 제조한 생분해성 소재의 토양에서 생분해 정도는 90 days 동안 6~20% 분해됨을 확인하였다.
In this study, eco-friendly biodegradable materials were prepared using poly(lactic acid) (PLA), poly(butylene adipate-co-terephthalate) (PBAT), and hydrogenated castor oil power (HCO) as an additive. The prepared PLA/PBAT/HCO blended films were characterized by the scanning electron microscope (SEM) and fourier-transform infrared spectroscopy (FT-IR). The results of SEM analysis indicated that PLA/PBAT (8 : 2) blended films added HCO showed no rough area, crack, or large agglomeration when compared with those adding various additives (12-hydroxy stearic acid (12HSA) and cellulose). The FT-IR results indicated the presence of specific peak of HCO in the PLA/PBAT blended films, and its peak intensity increased with increasing HCO content (0~5.0 wt%). Tensile strength, elongation at break, and water barrier and thermal properties of the prepared PLA/PBAT/HCO blended films were also investigated, indicating that the physical and thermal properties was improved more than three times by the addition of HCO. The biodegradability test in soil revealed that the prepared biodegradable materials were degraded by about 6.0~20% after 90 days.
  1. Barnes SJ, Environ. Pollut., 249, 812 (2019)
  2. Almroth BC, Eggert H, Rev. Env. Econ. Policy, 13, 317 (2019)
  3. Frond HL, Sebille E, Parnis JM, Diamond ML, Mallos N, Kingsbury T, Rochman CM, Integr. Environ. Assess. Manag., 15, 596 (2019)
  4. Mohanty AK, Misra M, Hinrichsen G, Macromol. Mater. Eng., 276/277, 2 (2000)
  5. Gross RA, Kalra B, Science, 279, 803 (2002)
  6. Mohee R, Unmar GD, Mudhoo A, Khadoo P, Sci. Waste Manage., 28, 1624 (2008)
  7. Bastioli C, Macromol. Symp., 135, 193 (1998)
  8. Paragkumar NT, Edith D, Six JL, Appl. Surf. Sci., 253, 2756 (2006)
  9. Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM, Carbohydr. Polym., 87, 1596 (2012)
  10. Ljungberg N, Wesslen B, Biomacromolecules, 6(3), 1789 (2005)
  11. Fukushima K, Wu MH, Bocchini S, Rasyida A, Yang MC, Mater. Sci. Eng. C, 32, 1331 (2012)
  12. Wang H, Wei D, Zheng A, Xiao H, Polym. Degrad. Stabil., 116, 14 (2015)
  13. Wei D, Wang H, zizee Z, Chibante F, Zheg A, Xiao H, Mater. Sci. Eng. C, 58, 986 (2016)
  14. Yu X, Wang N, Zhang R, Zhao Z, J. Oleo Sci., 66, 659 (2017)
  15. Kulkarni MG, Sawant SB, Eur. J. Lipid Sci. Technol., 105, 214 (2003)
  16. De Meirleir N, Pellens L, Broeckx W, van Assche G, De Malsche W, Colloid Polym. Sci., 292, 2539 (2014)
  17. Gu SY, Zhang K, Ren J, Zhan H, Carbohydr. Polym., 74, 79 (2008)
  18. Hamad K, Kaseem M, Ko YG, Deri F, Polym. Sci. Ser. A, 56, 812 (2014)
  19. Thongsong W, Kulsettanchalee C, Threepopnatkul P, Mater. Today Proc., 4, 6597 (2017)
  20. Signori F, Coltelli MB, Bronco S, Polym. Degrad. Stabil., 94, 74 (2009)
  21. Gu SY, Zhang K, Ren J, Zhan H, Carbohydr. Polym., 74, 79 (2008)
  22. Ogunniyi DS, Bioresour. Technol., 97(9), 1086 (2006)
  23. Coltelli MB, Della Maggiore I, Bertold M, Signori F, Bronco S, Ciardelli F, J. Appl. Polym. Sci., 110(2), 1250 (2008)
  24. Schneider J, Manjure S, Narayan R, J. Appl. Polym. Sci., 133, 1 (2016)
  25. Gere D, Czigany T, Polym. Test, 81, 1 (2020)
  26. Li Y, Zhao L, Han C, Yu Y, Colloid Polym. Sci., 298, 463 (2020)