화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.8, 1440-1444, August, 2020
Surface decorated La0.43Ca0.37Ni0.06Ti0.94O3-d as an anode functional layer for solid oxide fuel cell applications
E-mail:,
Surface decorated La0.43Ca0.37Ni0.06Ti0.94O3-d (LCNT) perovskite oxide was investigated as an anode functional layer (AFL) for anode-supported solid oxide fuel cells (SOFCs). The surface exsolved Ni nano particles on LCNT scaffold enlarged electrochemically active triple phase boundaries (TPBs) without any agglomeration and mechanical failure. The Ni particles with 60 nm in diameter were homogeneously exsolved from LCNT perovskite. The Ni-YSZ anode supported cell with LCNT anode functional layer (AFL) exhibited a maximum power density of 0.94 W/cm2, similar to that of the conventional Ni-YSZ AFL cell at 900 °C. The activation polarization resistance of the LCNT AFL cell was effectively reduced compared to that of the Ni-YSZ AFL cell, though it had higher Ohmic resistance due to thicker YSZ electrolyte and lower electrical conductivity. Our study suggests the potential use of LCNT with exsolved nano particles as an active and durable AFL for high-temperature SOFCs.
  1. Cowin PI, Petit CTG, Lan R, Irvine JTS, Tao S, Adv. Eng. Mater., 1(3), 314 (2011)
  2. Hauch A, Brodersen K, Chen M, Mogensen MB, Solid State Ion., 293, 27 (2016)
  3. Guillodo M, Vernoux P, Fouletier J, Solid State Ion., 127(1-2), 99 (2000)
  4. Irvine JTS, Neagu D, Verbraeken MC, Chatzichristodoulou C, Graves C, Mogensen MB, Nat. Energy, 1(1), 1 (2016)
  5. Hassan AAE, Menzler NH, Blass G, Ali ME, Buchkremer HP, Stover D, Adv. Eng. Mater., 4(3), 125 (2002)
  6. Yamaguchi T, Sumi H, Hamamoto K, Suzuki T, Fujishiro Y, Carter JD, Barnett SA, Int. J. Hydrog. Energy, 39(34), 19731 (2014)
  7. Ai N, Lu Z, Tang JK, Chen KF, Huang XQ, Su WH, J. Power Sources, 185(1), 153 (2008)
  8. Park YM, Lee HJ, Bae HY, Ahn JS, Kim H, Int. J. Hydrog. Energy, 37(5), 4394 (2012)
  9. Kong JR, Sun KN, Zhou DR, Zhang NQ, Mu J, Qiao JS, J. Power Sources, 166(2), 337 (2007)
  10. Wachsman ED, Lee KT, Science, 334(6058), 935 (2011)
  11. Virkar AV, Chen J, Tanner CW, Kim JW, Solid State Ion., 131(1-2), 189 (2000)
  12. Molin S, Chrzan A, Karczewski J, Szymczewska D, Jasinski P, Electrochim. Acta, 204, 136 (2016)
  13. Neagu D, Oh TS, Miller DN, Menard H, Bukhari SM, et al., Nat. Commun., 6, 1 (2015)
  14. Neagu D, Tsekouras G, Miller DN, Menard H, Irvine JTS, Nat. Chem., 5(11), 916 (2013)
  15. Tan J, Lee D, Ahn J, Kim B, Kim J, Moon J, J. Mater. Chem. A, 6(37), 18133 (2018)
  16. Lv H, Lin L, Zhang X, Song Y, Matsumoto H, Zeng C, Adv. Mater., 1906193, 1 (2019)
  17. Myung JH, Neagu D, Miller DN, Irvine JTS, Nature, 537(7621), 528 (2016)
  18. Lu L, Ni C, Cassidy M, Irvine JTS, J. Mater. Chem. A, 4(30), 11708 (2016)
  19. Kim J, Shin D, Son JW, Lee JH, Kim BK, Je HJ, Lee HW, Yoon KJ, J. Power Sources, 241, 440 (2013)
  20. Rosen BA, Electrochem, 1(1), 32 (2020)
  21. Tao S, Irvine JTS, Chem. Rec., 4, 83 (2004)
  22. Clemmer RMC, Corbin SF, Solid State Ion., 166(3-4), 251 (2004)
  23. Divisek J, Wilkenhoner R, Volfkovich Y, J. Appl. Electrochem., 29(2), 153 (1999)
  24. Holtappels P, Sorof C, Verbraeken MC, Rambert S, Vogt U, Fuel Cells, 6(2), 113 (2006)
  25. Kagomiya I, Kaneko S, Yagi Y, Kakimoto K, Park K, Cho KH, Ionics, 23(2), 427 (2017)
  26. Barfod R, Mogensen M, Klemensø T, Hagen A, Liu YL, Hendriksen PV, Proc. - Electrochem. Soc., 154(4), B371 (2007)
  27. Jia T, Zeng Z, Zhang X, Zhang X, Ohodnicki P, Chorpening B, Hackett G, Lekse J, Duan Y, Phys. Chem. Chem. Phys., 21(36), 20454 (2019)
  28. Bradha M, Hussain S, Chakravarty S, Amarendra G, Ashok A, J. Alloy. Compd., 626, 245 (2015)
  29. Bradha M, Hussain S, Chakravarty S, Amarendra G, Ashok A, Ionics, 20(9), 1343 (2014)