화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.58, No.3, 480-485, August, 2020
Onsager 이론으로 확장한 Maxwell-Wagner 분극 모델에 의한 전기유변 현상 모사
Simulation of Electrorheological Fluids by the Extended Maxwell-Wagner Polarization Model with Onsager Theory
E-mail:
초록
Onsager 이론으로 확장된 Maxwell-Wagner 분극 모델을 이용하여 전도성 입자로 제조된 전기유변(Electrorheological, ER) 액체의 전기유변 현상에 대한 전산 모사를 수행하였다. 확장된 Maxwell-Wagner 분극 모델을 이용한 전산 모사는 전도성 입자로 제조된 전기유변 액체의 특성인 비제곱 전기유변 현상(Δ τ∝En, N≈1.5)을 확인하였다. 전단 흐름에서 전단응력이 정상상태에 도달하는 시점은 전기장 하에서 생성된 사슬 모양 구조가 전단 흐름에 의해 깨짐과 재생성이 정상상태에 도달하는 지점으로 나타났다. 또한, 전단 속도의 증가에 따라 전단응력이 최솟값을 보이는 전도성 입자를 기반으로 한 전기유변 액체의 현상도 관찰하였으며, 이것은 입자의 사슬 모양 구조가 무작위 배열로 바뀌는 순간에 발생하는 것임을 관찰하였다. 입자의 부피 분율 φ가 증가에 따라 전단응력은 증가하다가 일정해지는 경향도 관찰하였다.
The extended Maxwell-Wagner polarization model is employed to describe the ER behavior of the conducting particle ER suspensions, and solutions to the equation of motion are obtained by dynamic simulation. The simulation results show the nonlinear ER behavior ( Δ τ∝En, N≈1.5 ) of the conducting particle ER suspensions. The response point, where shear stress reaches steady-state, is the point where stable break-up and rebuild of the chain-like structure of particles reaches. Also, it shows the minimum of shear stress, which corresponds the start-up of random particle configuration. The shear stress reaches plateau as particle volume fraction increases.
  1. Winslow WM, J. Appl. Phys., 20, 1137 (1949)
  2. Deinega YF, Vinogradov GV, Rheol. Acta, 23, 636 (1984)
  3. Shulman ZP, Gorodkin RG, Korobko EV, J. Non-Newton. Fluid Mech., 8, 29 (1981)
  4. Hao T, Adv. Colloid Interface Sci., 97, 1 (2002)
  5. Liu YD, Choi HJ, Soft Matter, 8, 11961 (2012)
  6. Block H, Kelly JP, J. Phys. D-Appl. Phys., 21, 1661 (1988)
  7. Kim DH, Kim YD, J. Ind. Eng. Chem., 13(6), 879 (2007)
  8. Filisko FE, Razdilowski LH, J. Rheol., 34, 539 (1990)
  9. Otsubo Y, Sakine M, Katayama S, J. Colloid Interface Sci., 150, 324 (1992)
  10. Kim YD, Klingenberg DJ, J. Colloid Interface Sci., 168, 568 (1996)
  11. Dong YZ, Kwon SH, Choi HJ, Puthiaraj P, Ahn W, ACS OMEGA, 3, 17246 (2018)
  12. Noh J, Yoon CM, Jang J, J. Colloid Interface Sci., 470, 237 (2016)
  13. Lengalova A, Pavlinek V, Saha P, Stejskal J, Quadrat O, J. Colloid Interface Sci., 258(1), 174 (2003)
  14. Stangroom JE, J. Stat. Phys., 64, 1059 (1991)
  15. Kim YD, J. Colloid Interface Sci., 236(2), 225 (2001)
  16. Klass DL, Martinek TW, J. Appl. Phys., 38, 67 (1967)
  17. Klingenberg DJ, Swol F, Zukoski CF, J. Chem. Phys., 94, 6160 (1991)
  18. Davis LC, Ginder JM, Progress in Electrorheology, New York, Plenum, 107-111(1995).
  19. Foulc JN, Atten P, Felici N, J. Electrostatics, 33, 103 (1994)
  20. Parthasarathy M, Klingenberg DJ, Mater. Sci. Eng., R17, 57 (1996)
  21. Kim YD, Korean Chem. Eng. Res., 56(5), 767 (2018)
  22. Marshall L, Zukoski CF, J. Chem. Soc., 85, 2785 (1989)
  23. Kim YD, Choi GS, Sim SJ, Cho YS, Korean J. Chem. Eng., 16(3), 338 (1999)
  24. Onsagar L, J. Chem. Phys., 2, 599 (1934)
  25. Kim YD, Park DH, Colloid Polym. Sci., 280, 828 (2002)
  26. Klingenberg DJ, Swol F, Zukoski CF, J. Chem. Phys., 94, 6170 (1991)