화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.4, 471-478, July, 2020
재료 압출 방식 3D 프린팅 시편에서 적층 경로와 적층 방향에 따른 충격강도의 변화
Variations in the Impact Strength of Material Extrusion-type 3D Printed Specimens Depending on Tool Path and Building Direction
E-mail:
초록
재료 압출 방식 3D 프린팅으로 제작된 제품은 기계적 강도가 낮아 그 쓰임에 한계가 있다. 본 연구에서는 압출방식 3D 프린팅에서 다양한 적층 방향과 적층 경로로 시편을 제작하여 충격강도를 평가하였다. 시편의 폭 방향과 두께 방향 등 두 가지의 적층 방향으로, 대칭 적층 경로 7개, 비대칭 적층 경로 6개 등 총 13가지의 적층 경로로 시편을 제작하여 충격시험을 진행하였다. 또한 사출성형으로 시편을 제작하여 적층 시편과의 충격강도를 비교하였다. 그리고 적층 경로에 따른 적층 시편의 단면을 관찰하였다. 두께 방향 적층에서 적층 경로 90/-90 시편에서 가장 낮은 충격강도를 보였다. 폭 방향 적층에서 적층 경로 0/0 시편 그리고 두께 방향 적층에서 적층 경로 0/0 시편과 15/-15 시편에서는 파단이 일어나지 않았다. 적층 방향과 적층 경로에 따라서 충격강도의 이방성이 크게 나타났으며 이의 조절을 통해 원 소재보다 강한 충격강도를 얻을 수 있음을 확인하였다.
Articles manufactured by material extrusion (ME)-type 3D printing have limited usage because of their low mechanical strength. In this study, the impact strengths of 3D printing manufactured specimens were examined by fabricating specimens with various building directions and tool paths. The building directions were the width direction and thickness direction of the specimen. There were 13 tool paths including 7 symmetric tool paths and 6 asymmetric tool paths. In addition, the specimen was fabricated by injection molding, and impact strength was compared with the 3D printing manufactured specimens. Cross-sectional morphologies of the 3D printing manufactured specimens were also examined. The lowest impact strength was shown in the specimen fabricated by tool path 90/-90, with building in the thickness direction. Specimens fabricated by tool path 0/0 with building in both directions, and tool path 15/-15 with building in the thickness direction were not broken. Large differences in the anisotropic impact strengths of 3D manufactured specimens were revealed to depend on the tool path and building direction, and it was verified that an impact strength greater than bulk impact strength can be obtained by controlling the tool path and building direction.
  1. Lyu MY, Kim HY, Poly. Sci. Technol., 20, 157 (2009).
  2. Paek SH, KIC News, 18, 1 (2015)
  3. Kumar S, Kruth JP, Mater. Des., 31, 850 (2010)
  4. Wang L, Gardner DJ, Polymer, 113, 74 (2017)
  5. Wang L, Gramlich WM, Gardner DJ, Polymer, 114, 242 (2017)
  6. McLouth TD, Severino JV, Adams PM, Patel DN, Zaldivar RJ, Addit. Manuf., 18, 103 (2017)
  7. Kim JS, Jo N, Nam JS, Lee SW, Trans. Korea Soc. Mech. Eng., 41, 607 (2017)
  8. Jaldivar RJ, Witkin DB, McLouth T, Patel DN, Schmitt K, Nokes JP, Addit. Manuf., 13, 71 (2017)
  9. Huang B, Singamneni S, J. Compos. Mater, 49, 363 (2015)
  10. Park SJ, Park JH, Lyu MY, Koo MS, Rho HJ, Cho SH, Polym. Korea, 41(3), 531 (2017)
  11. Yoon HS, Lyu MY, Jin SC, Polym. Korea, 42(5), 752 (2018)
  12. Park SJ, Park JH, Lee KH, Lyu MY, Polym. Korea, 40(6), 846 (2016)
  13. Es-Said OS, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger BA, Mater. Manuf. Process., 15, 107 (2000)