화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.6, 285-291, June, 2020
Cu2ZnSn(S,Se)4 (CZTSSe) 박막 태양전지 적용을 위한 마그네트론 스퍼터링으로 증착된 AZO/Ag/AZO 투명전극의 특성
Characteristics of an AZO/Ag/AZO Transparent Conducting Electrode Fabricated by Magnetron Sputtering for Application in Cu2ZnSn(S,Se)4 (CZTSSe) Solar Cells
E-mail:
Recent advances in technology using ultra-thin noble metal film in oxide/metal/oxide structures have attracted attention because this material is a promising alternative to meet the needs of transparent conduction electrodes (TCE). AZO/Ag/AZO multilayer films are prepared by magnetron sputtering for Cu2ZnSn(S,Se)4 (CZTSSe) of kesterite solar cells. It is shown that the electrical and optical properties of the AZO/Ag/AZO multilayer films can be improved by the very low resistivity and surface plasmon effects due to the deposition of different thicknesses of Ag layer between oxide layers fixed at AZO 30 nm. The AZO/Ag/AZO multilayer films of Ag 15 nm show high mobility of 26.4 cm2/Vs and low resistivity and sheet resistance of 3.58*10-5 Ωcm and 5.0 Ω/sq. Also, the AZO/Ag (15 nm)/AZO multilayer film shows relatively high transmittance of more than 65% in the visible region. Through this, we fabricated CZTSSe thin film solar cells with 7.51% efficiency by improving the short-circuit current density and fill factor to 27.7 mV/cm2 and 62 %, respectively.
  1. Eritt M, May C, Leo K, Toerker M, Radehaus C, Thin Solid Films, 518(11), 3042 (2010)
  2. Mirzaei A, Neri G, Sens. Actuators B-Chem., 237, 749 (2016)
  3. Jang JS, Kim J, Ghorpade U, Shin HH, Gang MG, Park SD, Kim HJ, Lee DS, Kim JH, J. Alloy. Compd., 793, 499 (2019)
  4. Heo KC, Sohn Y, Gwag JS, Ceram. Int., 41, 617 (2015)
  5. Yun J, Adv. Funct. Mater., 27, 160664 (2017)
  6. Khalid A, J. Display Technol., 7, 593 (2011)
  7. Minami T, Semicond. Sci. Technol., 20, S35 (2005)
  8. Huang X, Zeng ZY, Fan ZX, Liu JQ, Zhang H, Adv. Mater., 24(45), 5979 (2012)
  9. De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, Blau WJ, Boland JJ, Coleman JN, ACS Nano, 3, 1767 (2009)
  10. Kang MG, Kim MS, Kim JS, Guo LJ, Adv. Mater., 20(23), 4408 (2008)
  11. Christensen NE, Phys. Status Solidi B, 54, 551 (1972)
  12. Zhao G, Wang W, Bae TS, Lee SG, Mun C, Lee S, Yu H, Lee GH, Song M, Yun J, Nat. Commun., 6, 8830 (2015)
  13. Zhang C, Zhao DW, Gu DE, Kim H, Ling T, Wu YKR, Guo LJ, Adv. Mater., 26(32), 5696 (2014)
  14. Lim DC, Jeong JH, Hong K, Nho S, Lee JY, Hoang QV, Lee SK, Pyo K, Lee D, Cho S, Prog. Photovolt., 26, 188 (2018)
  15. Meiss J, Riede MK, Leo K, J. Appl. Phys., 105, 063108 (2009)
  16. Logeeswaran VJ, Kobayashi NP, Islam MS, Wu W, Chaturvedi P, Fang NX, Wang SY, Williams RS, Nano Lett., 9, 178 (2009)
  17. Formica N, Ghosh DS, Carrilero A, Chen TL, Simpson RE, Pruneri V, ACS Appl. Mater. Interfaces, 5, 3048 (2013)
  18. Liu H, Wang B, Leong ESP, Yang P, Zong Y, Si G, Teng J, Maier SA, ACS Nano, 4, 3139 (2010)
  19. Abadias G, Simonot L, Colin JJ, Michel A, Camelio S, Babonneau D, Appl. Phys. Lett., 107, 183105 (2015)
  20. Jeong E, Bae S, Park JB, Yu SM, Kim D, Lee HS, Rha J, Cho YR, Yun J, RSC Adv., 9, 9160 (2019)
  21. Zhao G, Song M, Chung HS, Kim SM, Lee SG, Bae JS, Bae TS, Kim D, Lee GH, Han SZ, Lee HS, Choi EA, Yun J, ACS Appl. Mater. Interfaces, 9, 38695 (2017)
  22. Kang S, Nandi R, Sim J, Jo J, Chatterjee U, Lee C, RSC Adv., 7, 48113 (2017)