화학공학소재연구정보센터
Clean Technology, Vol.26, No.2, 116-121, June, 2020
폐 전지로부터 재활용 과정을 통한 란타넘, 네오디뮴 회수에 관한 연구
A Study on the Recovery of Lantanum and Neodymium from Waste Battery Through the Recycling Process
E-mail:,
초록
본 연구에서는 유가금속 회수를 한 전기차 폐배터리 부산물의 재활용에 관하여 연구하였다. 폐배터리 부산물에는 희토류들이 남아있으나, 부산물의 형태로는 소재로서의 가치가 없기에 정제과정을 거쳐 희토류 산화물로 회수하였다. 희토류침전분말 형태의 부산물을 30% 수산화나트륨을 이용하여 가공이 편한 수산화물로 변환한 뒤, 옥살산의 용해도 차이를 이용하여 남아 있는 불순물을 정제한 뒤, D2EHPA (Di-(2-ethylhexyl) phosphoric acid)를 사용하여 이트륨을 분리하였다. 과망가니즈산 칼륨을 이용하여 세륨을 분리 후, PC88A (2-ethylhexylphosphonic acid mono-2-ethylhexyl ester)를 사용하여 란타넘과 네오디뮴을 분리하였다. 그 후 800 ℃의 온도에서 소성하여 란타넘, 네오디뮴 산화물로 재생하는 방법을 확인하였다.
In this paper, the recycling of waste Ni-MH battery by-products for electric vehicle is studied. Although rare earths elements still exist in waste Ni-MH battery by-products, they are not valuable as materials in the form of by-products (such as an insoluble substance). This study investigates the recovering of rare earth oxide for solvent extraction A/O ratio, substitution reaction, and reaction temperature, and scrubbing of the rare earth elements for high purity separation. The by-product (in the form of rare earth elements insoluble powder) is converted into hydroxide form using 30% sodium hydroxide solution. The remaining impurities are purified using the difference in solubility of oxalic acid. Subsequently, Yttrium is isolated by means of D2EHPA (Di-[2-ethylhexyl] phosphoric acid). After cerium is separated using potassium permanganate, lanthanum and neodymium are separated using PC88A (2-ethylhexylphosphonic acid mono-2-ethylhexyl ester) and it is calcinated at a temperature of 800 ℃. As a result of the physical and chemical measurement of the calcined lanthanum and neodymium powder, it is confirmed that the powder is a microsized porous powder in an oxide form of 99.9% or more. Rare earth oxides are recovered from Ni-MH battery by-products through two solvent extraction processes and one oxidation process. This study has regenerated lanthanum and neodymium oxide as a useful material.
  1. Humphries M, Congressional Research Service., 16 (2013)
  2. https://www.usgs.gov/centers/nmic/rare-earths-statistics-andinformation(accessed Jan. 2019).
  3. Lim K, Han J, Park S, J. Korean Phys. Soc. Webzine Article., 28(9), 3 (2019)
  4. Gupta CK, Krishnamurthy N, Int. Mater. Rev., 37(1), 197 (1992)
  5. Abreu RD, Morais CA, Miner. Eng., 23(6), 536 (2010)
  6. Mohammadi M, Forsberg K, Kloo L, Martinez De La Cruz J, Rasmuson A, Hydrometallurgy, 156, 215 (2015)
  7. Kim B, Ahn N, Lee S, Kim D, JKIRR., 28(6), 18 (2019)
  8. Ahn N, Kim D, Yang D, JKIRR., 27(1), 22 (2018)
  9. Ahn N, Kim D, Shim H, Park J, J. Korean Cryst. Growth Cryst. Technol., 28(2), 85 (2018)
  10. Yoon H, Kim C, Eom H, Kim J, JKIRR., 14, 3 (2005)
  11. Orhanovic Z, Pokric B, Furedi H, Branica M, Croat. Chem. Acta, 38, 269 (1966)
  12. Kao HC, Yen PS, Juang RS, Chem. Eng. J., 119(2-3), 167 (2006)
  13. Kashi E, Habibpour R, Gorzin H, Maleki A, J. Rare Earth, 36(3), 317 (2018)
  14. Golden TD, Shang Y, Wang Q, Zhou T, Intech, (2015).
  15. Duhan S, IJPAP, 47(12), 872 (2009)
  16. Kepinski L, Zawadzki M, Mista W, Solid State Sci., 6(12), 1327 (2004)
  17. Rosynek MP, Magnuson DT, J. Catal., 46, 402 (1977)
  18. Hussein GA, Ismail HM, Powder Technol., 84(2), 185 (1995)
  19. Duhan S, Aghamkar P, Singh M, phys. res. int., 2008 (2008)
  20. Adi WA, Wardiyati S, Dewi SH, IOP Conference Series: Materials Science and Engineering, 202, (2017).
  21. Aldebert P, Traverse PJ, Mater. Res. Bull., 14(3), 303 (1979)
  22. Saravani H, Jehali M, Orient. J. Chem., 31(4), 2351 (2015)
  23. Cheraitia K, Lounis A, Mohamed M, Azzaz M, Osmane K, Matter : Int. J. Sci. Technol, 1(1), 259-274 (2015).