Clean Technology, Vol.26, No.2, 116-121, June, 2020
폐 전지로부터 재활용 과정을 통한 란타넘, 네오디뮴 회수에 관한 연구
A Study on the Recovery of Lantanum and Neodymium from Waste Battery Through the Recycling Process
E-mail:,
초록
본 연구에서는 유가금속 회수를 한 전기차 폐배터리 부산물의 재활용에 관하여 연구하였다. 폐배터리 부산물에는 희토류들이 남아있으나, 부산물의 형태로는 소재로서의 가치가 없기에 정제과정을 거쳐 희토류 산화물로 회수하였다. 희토류침전분말 형태의 부산물을 30% 수산화나트륨을 이용하여 가공이 편한 수산화물로 변환한 뒤, 옥살산의 용해도 차이를 이용하여 남아 있는 불순물을 정제한 뒤, D2EHPA (Di-(2-ethylhexyl) phosphoric acid)를 사용하여 이트륨을 분리하였다. 과망가니즈산 칼륨을 이용하여 세륨을 분리 후, PC88A (2-ethylhexylphosphonic acid mono-2-ethylhexyl ester)를 사용하여 란타넘과 네오디뮴을 분리하였다. 그 후 800 ℃의 온도에서 소성하여 란타넘, 네오디뮴 산화물로 재생하는 방법을 확인하였다.
In this paper, the recycling of waste Ni-MH battery by-products for electric vehicle is studied. Although rare earths elements still exist in waste Ni-MH battery by-products, they are not valuable as materials in the form of by-products (such as an insoluble substance). This study investigates the recovering of rare earth oxide for solvent extraction A/O ratio, substitution reaction, and reaction temperature, and scrubbing of the rare earth elements for high purity separation. The by-product (in the form of rare earth elements insoluble powder) is converted into hydroxide form using 30% sodium hydroxide solution. The remaining impurities are purified using the difference in solubility of oxalic acid. Subsequently, Yttrium is isolated by means of D2EHPA (Di-[2-ethylhexyl] phosphoric acid). After cerium is separated using potassium permanganate, lanthanum and neodymium are separated using PC88A (2-ethylhexylphosphonic acid mono-2-ethylhexyl ester) and it is calcinated at a temperature of 800 ℃. As a result of the physical and chemical measurement of the calcined lanthanum and neodymium powder, it is confirmed that the powder is a microsized porous powder in an oxide form of 99.9% or more. Rare earth oxides are recovered from Ni-MH battery by-products through two solvent extraction processes and one oxidation process. This study has regenerated lanthanum and neodymium oxide as a useful material.
- Humphries M, Congressional Research Service., 16 (2013)
- https://www.usgs.gov/centers/nmic/rare-earths-statistics-andinformation(accessed Jan. 2019).
- Lim K, Han J, Park S, J. Korean Phys. Soc. Webzine Article., 28(9), 3 (2019)
- Gupta CK, Krishnamurthy N, Int. Mater. Rev., 37(1), 197 (1992)
- Abreu RD, Morais CA, Miner. Eng., 23(6), 536 (2010)
- Mohammadi M, Forsberg K, Kloo L, Martinez De La Cruz J, Rasmuson A, Hydrometallurgy, 156, 215 (2015)
- Kim B, Ahn N, Lee S, Kim D, JKIRR., 28(6), 18 (2019)
- Ahn N, Kim D, Yang D, JKIRR., 27(1), 22 (2018)
- Ahn N, Kim D, Shim H, Park J, J. Korean Cryst. Growth Cryst. Technol., 28(2), 85 (2018)
- Yoon H, Kim C, Eom H, Kim J, JKIRR., 14, 3 (2005)
- Orhanovic Z, Pokric B, Furedi H, Branica M, Croat. Chem. Acta, 38, 269 (1966)
- Kao HC, Yen PS, Juang RS, Chem. Eng. J., 119(2-3), 167 (2006)
- Kashi E, Habibpour R, Gorzin H, Maleki A, J. Rare Earth, 36(3), 317 (2018)
- Golden TD, Shang Y, Wang Q, Zhou T, Intech, (2015).
- Duhan S, IJPAP, 47(12), 872 (2009)
- Kepinski L, Zawadzki M, Mista W, Solid State Sci., 6(12), 1327 (2004)
- Rosynek MP, Magnuson DT, J. Catal., 46, 402 (1977)
- Hussein GA, Ismail HM, Powder Technol., 84(2), 185 (1995)
- Duhan S, Aghamkar P, Singh M, phys. res. int., 2008 (2008)
- Adi WA, Wardiyati S, Dewi SH, IOP Conference Series: Materials Science and Engineering, 202, (2017).
- Aldebert P, Traverse PJ, Mater. Res. Bull., 14(3), 303 (1979)
- Saravani H, Jehali M, Orient. J. Chem., 31(4), 2351 (2015)
- Cheraitia K, Lounis A, Mohamed M, Azzaz M, Osmane K, Matter : Int. J. Sci. Technol, 1(1), 259-274 (2015).