화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.88, 348-355, August, 2020
Development of highly efficient blue-emitting ZnSexTe1-x/ZnSe/ZnS quantum dots and their electroluminescence application
E-mail:,
Highly efficient blue-emitting halide-passivated QDs with the emission of 445-450 nm were developed. First, we prepared large ZnSe QDs and evaluated their wavelength, but 440 nm was the upper limit. Then, ZnSe1-xTex QDs were synthesized, and thus 410 nm emission was achieved. To improve the quantum yield (QY) and obtain a red-shifted wavelength, repeated ZnSe shell coating, ZnS coating, and halide passivation were conducted. The optimum were ZnSe1-xTex/ZnSe/ZnS QDs with 5% or 2% Te. The final QDs with 5% Te have a higher QY of 81% and the performance of the deep-blue QLEDs (turn-on voltage: 5.13 V, maximum luminance: 3200 cd/m2, maximum current efficiency: 2.73 cd/A, and maximum EQE: 4.06%, CIE: (0.151, 0.056)); however, a long emission tail due to the surface trap will hinder practical application. The QDs with 2% Te have a good emission profile and FWHM of 16 nm, but their QY is slightly lower.
  1. Murray CB, Norris DJ, Bawendi MG, J. Am. Chem. Soc., 115, 8706 (1993)
  2. Bawendi M, Annu. Rev. Phys. Chem., 41, 477 (1990)
  3. Scholes GD, Adv. Funct. Mater., 18(8), 1157 (2008)
  4. Smith AM, Nie S, Accounts Chem. Res., 43, 190 (2010)
  5. Kim S, Im SH, Kim SW, Nanoscale, 5, 5205 (2013)
  6. Kovalenko MV, Manna L, Cabot A, Hens Z, Talapin DV, Kagan CR, et al., ACS Nano, 9, 1012 (2015)
  7. Choi MK, Yang J, Hyeon T, Kim DH, npj Flex. Electron., 2, 10 (2018)
  8. Liu LP, Peng Q, Li YD, Inorg. Chem., 47(11), 5022 (2008)
  9. Deng ZT, Lie FL, Shen SY, Ghosh I, Mansuripur M, Muscat AJ, Langmuir, 25(1), 434 (2009)
  10. Rizzo A, Li Y, Kudera S, Sala FD, Zanella M, Parak WJ, Cingolani R, Manna L, Gigli G, Appl. Phys. Lett., 90, 2005 (2007)
  11. Tan Z, Zhang F, Zhu T, Xu J, Nano Lett., 7(12), 3803 (2007)
  12. Rossbach R, Schulz WM, Reischle M, Beirne GJ, Jetter M, Michler P, J. Cryst. Growth, 298, 595 (2007)
  13. Yang SJ, Oh JH, Kim S, Yang H, Do YR, J. Mater. Chem. C, 3, 3582 (2015)
  14. Liu X, Jiang Y, Fu F, Guo W, Huang W, Li L, Mater. Sci. Semicond. Process., 16, 1723 (2013)
  15. Lim K, Jang HS, Woo K, Nanotechnology, 23, 485609 (2012)
  16. Ippen C, Greco T, Kim Y, Kim J, Oh MS, Han CJ, Wedel A, Org. Electron. physics, Mater. Appl., 15, 126 (2014)
  17. Ji W, Jing P, Xu W, Yuan X, Wang Y, Zhao J, Jen AKY, Appl. Phys. Lett., 103, 3 (2013)
  18. Cooper JK, Gul S, Lindley SA, Yano J, Zhang JZ, ACS Appl. Mater. Interfaces, 7, 10055 (2015)
  19. Zhao Z, Zeng J, Ding Z, Wang X, Hou J, Zhang Z, J. Appl. Phys., 102, 1 (2007)
  20. Fairclough SM, Tyrrell EJ, Graham DM, Lunt PJB, Hardman SJO, Pietzsch A, Hennies F, Moghal J, Flavell WR, Watt AAR, Smith JM, J. Phys. Chem. C, 116, 26898 (2012)
  21. Yu K, Hrdina A, Zhang X, Ouyang J, Leek DM, Wu X, Gong M, Wilkinson D, Li C, Chem. Commun., 47, 8811 (2011)
  22. Evans CM, Evans ME, Krauss TD, J. Am. Chem. Soc., 132(32), 10973 (2010)
  23. Banski M, Afzaal M, Malik MA, Podhorodecki A, Misiewicz J, O’Brien P, Chem. Mater., 27, 3797 (2015)
  24. Kang MJ, Kim SW, P. Science, 23, 493 (2012)
  25. Lee D, Mysyrowicz A, Nurmikko AV, Phys. Rev. Lett., 58, 1475 (1987)
  26. Yao T, Kato M, Davies JJ, Tanino H, J. Cryst. Growth, 86, 552 (1988)
  27. de la Fuente MS, Sa’nchez RS, Gonza’lez-Pedro V, Boix PP, Mhaisalkar SG, Rinco’n ME, Bisquert J, Mora-Sero I, J. Phys. Chem. Lett., 4, 1519 (2013)
  28. Kryzhanovskaya NV, Lebedev MV, Lvova TV, Kudashova YV, Shostak II, et al., J. Phys. Conf. Ser., 643, 012043 (2015)
  29. Jang EP, Han CY, Lim SW, Jo JH, Jo DY, Lee SH, Yoon SY, Yang H, ACS Appl. Mater. Interfaces, 11, 46062 (2019)