화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.88, 196-206, August, 2020
Nickel electrodeposited textiles as wearable radar invisible fabrics
E-mail:
This work outlines the efforts to qualify a few wearable fabrics electrodeposited with nickel, as efficient absorbents of microwaves in X band. Here two samples of fabrics - a natural fiber based linen and an artificial fiber based nylon fabrics were chosen for electrodeposition. The surface activation of the fabric was carried out through sputtering of platinum, followed by electrodeposition of nickel using Watts bath solution. Interestingly, the two step process has transformed the fabric from an electromagnetic (EM) transparent material to an excellent electromagnetic interference (EMI) attenuator, retaining its flexibility and breathability. Microstructural analysis of electrodeposited fabrics showed much thicker and broader Ni deposits for linen than nylon fabric due to the availability of more bundle of fibers. Further, the abundance of lint in linen provide more surface to deposit Ni, which helps in achieving better shielding values. Metallic and ferromagnetic characteristics of the Ni deposited fabric structures were investigated. Exceptional EMI shielding efficiency of 45-52 dB is achieved for Ni deposited linen, which means 99.999% of attenuation is attained. The outcome of this research can lead to the development of lightweight, wearable and flexible ‘radar invisible fabrics’, which has wide range of applicability in defense and healthcare sectors.
  1. Dijith KS, Vijayan S, Prabhakaran K, Surendran KP, J. Ind. Eng. Chem., 78, 330 (2019)
  2. Tong XC, Advanced Materials and Design for Electromagnetic Interference Shielding, CRC Press, United States, 2009.
  3. Jia LC, Ding KQ, Ma RJ, Wang HL, Sun WJ, Yan DX, Li B, Li ZM, Adv. Mater. Technol., 4(2), 180050 (2019)
  4. Dhineshbabu NR, Behera SS, Bose S, ChemistrySelect, 3, 6087 (2018)
  5. Palanisamy S, Tunakova V, Militky J, Res. J., 1 (2017).
  6. Moazzenchi B, Montazer M, Colloids Surf. A: Physicochem. Eng. Asp., 571, 110 (2019)
  7. Wang R, Yang H, Wang J, Li F, Polym. Test, 38, 53 (2014)
  8. Dijith KS, Aiswarya R, Praveen M, Pillai S, Surendran KP, Mater. Chem. Front., 2(10), 1829 (2018)
  9. Ghosh S, Ganguly S, Remanan S, Das NC, Compos. Sci. Technol., 181, 107682 (2019)
  10. Eddib AA, Chung DDL, Carbon, 117, 427 (2017)
  11. Chen WH, Duan WF, Liu Y, Wang Q, Qi FW, Ind. Eng. Chem. Res., 58(47), 21531 (2019)
  12. Zhao S, Zhang HB, Luo JQ, Wang QW, Xu B, Hong S, Yu ZZ, ACS Nano, 12(11), 11193 (2018)
  13. Li LCX, Yin X, Liang S, Li M, Zhang L, Carbon, 146, 210 (2019)
  14. Xu YD, Yang YQ, Duan HJ, Gao JF, Yan DX, Zhao GZ, Liu YQ, Appl. Surf. Sci., 455, 856 (2018)
  15. Gahlout P, Choudhary V, Compos. B Eng., 175, 107093 (2019)
  16. Zhao H, Hou L, Bi S, Lu Y, ACS Appl. Mater. Interfaces., 9(38), 33059 (2017)
  17. Zhao H, Hou L, Lu Y, Mater. Des., 95, 97 (2016)
  18. Aiswarya R, Dijith KS, Surendran KP, ACS Omega, 3, 14245 (2018)
  19. Tan YJ, Li J, Gao Y, Li J, Guo SY, Wang M, Appl. Surf. Sci., 458, 236 (2018)
  20. Rathmell AR, Nguyen M, Chi M, Wiley BJ, Nano Lett., 12(6), 3193 (2012)
  21. Jiyong H, Guohao L, Junhui S, Xudong Y, Res. J., 1 (2016).
  22. Zhao H, Hou L, Lu YX, Chem. Eng. J., 297, 170 (2016)
  23. Kourkoumelis N, Elgaoudi H, Varella E, Kovala-demertzi D, Appl. Phys. A-Mater. Sci. Process., 112, 469 (2013)
  24. Cao H, Wang L, Qiu Y, Wu Q, Wang G, Zhang L, Chem. Phys. Chem., 7, 1500 (2006)
  25. Riande R, Diaz-Calleja E, Electrical Properties of Polymers, CRC Press, Boca Raton Boston, New York, Washington DC, 2004.
  26. Bur AJ, Polymer, 26, 963 (1985)
  27. Fert A, Campbell IA, J. Phys. F Met. Phys., 6(5), 849 (1976)
  28. Cullity BD, Graham CD, Introduction to Magnetic Materials, 2nd edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
  29. Roh J, Chi Y, Kang TJ, Nam S, Res. J., 78(9), 825 (2008)
  30. Chen HC, Lee KC, Lin JH, Koch M, Mater J, Process. Technol., 193, 549 (2007)
  31. Xu C, Liu G, Chen H, J. Mater, Sci. Mater. Electron., 25, 2611 (2014)
  32. Hong X, Chung DDL, Carbon, 111, 529 (2017)
  33. Dijith KS, Pillai S, Surendran KP, J. Electron. Mater., 46, 5158 (2017)
  34. Joseph N, Varghese J, Sebastian MT, J. Mater. Chem. C, 4(4), 999 (2016)
  35. Dijith KS, Pillai S, Surendran KP, Surf. Coat. Technol., 330, 34 (2017)
  36. Zhan Y, Oliviero M, Wang J, Sorrentino A, Buonocore GG, Sorrentino L, Lavorgna M, Xia H, Iannace S, Nanoscale, 11(3), 1011 (2019)
  37. Bantsis G, Betsiou M, Bourliva T, Yioultsis C, Sikalidis, Ceram. Int., 38(1), 721 (2012)
  38. Ameli A, Nofar M, Wang S, Park CB, ACS Appl. Mater. Interfaces, 6(14), 11091 (2014)
  39. Luo S, Xie L, Han F, Wei W, Huang Y, Zhang H, Zhu M, Schmidt OG, Wang L, Adv. Funct. Mater., 29(28), 190133 (2019)
  40. Huang Y, Zhu M, Huang Y, Li H, Pei Z, Xue Q, Liao Z, Wang Z, Zhi C, J. Mater. Chem. A, 4(12), 4580 (2016)