화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.3, 328-333, June, 2020
Pyrolyzed Fuel Oil/Coal-tar 혼합원료의 열중합 반응에 따른 Pitch 제조 특성
Characteristics of Pitch Production of Pyrolyzed Fuel Oil/Coal-tar Blending Feedstock by Thermal Polymerization Reaction
E-mail:
초록
본 연구에서는 PFO와 Coal-tar의 구조와 열 중합 거동 분석을 통해 PFO와 Coal-tar으로 구성된 혼합 원료의 피치 합성간 제조 특성을 확인하였다. 원소분석과 FT-IR 분석을 통해, PFO와 Coal-tar 각각 0.355, 0.818로 방향족화도 수치를 확인하였다. 또한, PFO와 Coal-tar의 열중량 분석을 통해 질량 감소곡선의 차이를 확인하였으며, 이러한 현상은 방향족화도와 관능기 함량에 따른 구조적 안정성에 기인한 것으로 판단된다. 피치 제조 특성은 PFO를 원료로 사용한 피치가 혼합원료로부터 제조된 피치보다 평균적으로 낮은 수율과 높은 연화점을 보임을 확인하였다. 특히 유사한 연화점을 가지는 P360 (138.5 ℃)과 B420 (141.4 ℃)을 비교하였을 때, 두 피치의 탄화수율은 각각 29.89, 49.03 wt%로 Coal-tar가 혼합된 경우 약 20 wt% 향상됨을 확인하였다. 이러한 결과는 다량의 알킬기를 포함하여 높은 피치 중합 반응성을 가지는 PFO와 높은 열적 안정성을 가지는 Coal-tar의 혼합에 기인한 것으로 판단된다.
In this study, blended feedstock derived pyrolyzed fuel oil (PFO) and coal-tar was prepared to produce a pitch by thermal polymerization reaction for manufacturing artificial graphite materials. The aromaticity value of 0.355 and 0.818 was obtained for PFO and coal-tar, respectively. In addition, PFO and coal-tar exhibited the difference tendency of weight loss curve for thermogravimetric analysis, which is related to the structural stability depending on the aromaticity and functional groups. The production characteristics confirmed that the pitch derived PFO showed lower production yield and higher softening point than that using blended feedstock. In particular, when comparing P360 (138.5 ℃) and B420 (141.4 ℃) having similar softening points, the production yields of both pitches exhibited 29.89 and 49.03 wt%, respectively. This is mainly due to the blending of PFO and coal-tar having high pitch polymerization reactivity including a large amount of alkyl groups and coal-tar having high thermal stability. This phenomenon indicated that the increased production yield is because of a synergic effect of both the high reactivity of PFO and thermal stability of coal-tar.
  1. Zhoung B, Zhao GL, Huang XX, Liu J, Chai ZF, Tang XH, Wen G, Wu Y, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 610, 250 (2014)
  2. Predeanu G, Panaitescu C, Balanescu M, Bieg G, Borrego AG, et al., Int. J. Coal. Geol., 139, 63 (2015)
  3. Kim BJ, Eom YH, Kato O, Miyawaki J, Kim BC, Mochida I, Yoon SH, Carbon, 77, 747 (2014)
  4. Kim JG, Kim JH, Bai BC, Choi YJ, Im JS, Bae TS, Lee YS, Carbon Lett., 28, 24 (2018)
  5. Kim JG, Kim JH, Im JS, Lee YS, Bae TS, J. Ind. Eng. Chem., 62, 176 (2017)
  6. Kim JH, Kim JG, Lee KB, Im JS, Carbon Lett., 29, 203 (2019)
  7. Kim JH, Kim HG, Trans. Korean Hydrog. New Energy Soc., 27, 612 (2016)
  8. Bai BC, Kim JC, Kim JH, Lee CW, Lee YS, Im JS, Carbon Lett.., 25, 78 (2018)
  9. Martinez-Escandell M, Rodriguez-Valero MA, Coronado JS, Rodriguez-Reinoso F, Carbon, 40, 2843 (2002)
  10. White JL, Price RJ, Carbon, 12, 321 (1974)
  11. Cheng XL, Zha QF, Li XJ, Yang XJ, Fuel Process. Technol., 89(12), 1436 (2008)
  12. Moriyama R, Kumagaia H, Hayashia J, Yamaguchi C, Mondorib J, Matsui H, Chiba T, Carbon, 38, 749 (2000)
  13. Kim JG, Kim JH, Song BJ, Lee CW, Im JS, J. Ind. Eng. Chem., 36, 293 (2016)