화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.3, 258-266, June, 2020
CO2로부터 5원환 탄산염의 화학적 고정화 반응을 위한 Metal-Organic Frameworks의 촉매적 응용
Catalytic Application of Metal-Organic Frameworks for Chemical Fixation of CO2 into Cyclic Carbonate
E-mail:,
초록
CO2로부터 5원환 탄산염의 합성은 지구 온난화를 문제를 해결하고 정밀한 화학 물질을 생산하는 유망한 방법 중 하나이다. 본 총설에서는 CO2와 에폭시 화합물로부터 5원환 탄산염 합성을 위한 다공성 결정 물질인 metal-organic framework (MOF)의 촉매로써 적용 가능성에 대해 검토하였다. CO2와 에폭시 화합물의 부가 반응에 대하여 MOF의 구조적 기능과 그에 따른 불균일계 촉매로써의 활성을 조사하였다. 그 결과, 5원환 탄산염 합성에서 MOF 촉매의 산점(acidic site)과 친핵체(nucleophile)의 상승효과(synergistic effect)에 의하여 반응성이 높아지는 것을 확인하였다. 또한 CO2의 부가반응에서 설계된 MOF의 구조에 대한 영향과 반응메커니즘을 조사하여 제시하였다.
The chemical fixation of CO2 into cyclic carbonates is considered to be one of the most promising way to alleviate global warming and produce fine chemicals. In this work, the catalytic applicability of metal-organic frameworks (MOFs) as porous crystalline materials for the synthesis of five-membered cyclic carbonate from CO2 and epoxides was reviewed. In addition, we have briefly classified the materials based on their different structural features and compositions. The studies revealed that MOFs exhibited good catalytic performance towards cyclic carbonate synthesis because of the synergistic effect between the acid sites of MOFs and nucleophile. Moreover, the effect of structure of designed MOFs and mechanism for the cycloaddition of CO2 were suggested.
  1. Gavin DG, Bower CJ, Proc. of the JAPAN-EC, Japan (1991).
  2. Inoue S, Tsuruta T, Koinuma H, J. Polym. Sci. Polym. Lett., 7(4), 287 (1969)
  3. Trickett CA, Helal A, Al-Maythalony BA, Yamani ZH, Cordova KE, Yaghi OM, Nat. Rev. Mats., 2, 17045 (2017)
  4. Cho SH, Bai BC, Yu HR, Lee YS, Appl. Chem. Eng., 22(4), 343 (2011)
  5. Chu S, Science, 325(5948), 1599 (2009)
  6. Sakakura T, Choi JC, Yasuda H, Chem. Rev., 107(6), 2365 (2007)
  7. Maeda C, Miyazaki Y, Ema T, Catal. Sci. Technol., 6, 1482 (2014)
  8. Jintu FK, Yadagiri R, Palakkal AS, Pilla RS, Gu Y, Choe Y, Park DW, ACS Appl. Mater. Interfaces, 11, 41458 (2019)
  9. Federsel C, Jackstell R, Beller M, Angew. Chem.-Int. Edit., 49, 6254 (2010)
  10. Romano U, Chim. Ind., 75, 303 (1993)
  11. Shaikh AA, Sivaram S, Chem. Rev., 96(3), 951 (1996)
  12. Weissermel K, Arpe HJ, Industral Organic Chemestry, 3rd ed., Wiley-VCH, New York (1997).
  13. Zhang S, Sun J, Zhang X, Xun J, Miao Q, Wang J, Chem. Soc. Rev., 43, 7838 (2014)
  14. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kuhn FE, Angew. Chem.-Int. Edit., 50, 8510 (2011)
  15. Fiorani G, Guo W, Kleij AW, Green Chem., 17, 1375 (2015)
  16. Kim DW, Roshan R, Tharun J, Cherian A, Park DW, Korean J. Chem. Eng., 30(11), 1973 (2013)
  17. Chung YG, Camp J, Haranczyk M, Sikora BJ, Bury W, Krungleviciute V, Yildirim T, Farha OK, Sholl DS, Sunrr RQ, Chem. Mater., 26(21), 6185 (2014)
  18. Moghadam PZ, Li A, Wiggin SB, Tao A, Maloney AGP, Wood PA, Ward SC, Fairen-Jimenez D, Chem. Mater., 29(7), 2618 (2017)
  19. Liang J, Huang YB, Cao R, Coord. Chem. Rev., 378, 32 (2019)
  20. Pramanik A, Abbina S, Das G, Polyhedron, 26, 5225 (2007)
  21. Dang DB, Wu PY, He C, Xie Z, Duan CY, J. Am. Chem. Soc., 132(41), 14321 (2010)
  22. Horcajada P, Surble S, Serre C, Hong DY, Seo YK, Chang JS, Greneche JM, Margiolaki I, Ferey G, Chem. Commun., 27, 2820 (2007)
  23. Henschel A, Gedrich K, Kraehnert R, Kaskel S, Chem. Commun., 35, 4192 (2008)
  24. Schlichte K, Kratzke T, Kaskel S, Microporous Mesoporous Mater., 73, 81 (2004)
  25. Vermoortele F, Vandichel M, Voorde BV, Ameloot R, Waroquier M, Speybroeck VV, Vos DE, Angew. Chem.-Int. Edit., 51, 4887 (2012)
  26. Dhakshinamoorthy A, Li Z, Garcia H, Chem. Soc. Rev., 47, 8134 (2018)
  27. Kishimoto Y, Ogawa I, Ind. Eng. Chem. Res., 43(26), 8155 (2004)
  28. Huang JW, Shi M, J. Org. Chem., 68, 6705 (2003)
  29. Song J, Zhang Z, Hu S, Wu T, Jiang T, Han B, Green Chem., 11, 1031 (2009)
  30. Yang DA, Cho HY, Kim J, Yang ST, Ahn WS, Energy Environ. Sci., 5, 6465 (2012)
  31. Chen B, Yang Z, Zhua Y, Xia Y, J. Mater. Chem. A, 2, 16811 (2014)
  32. Kuruppathparambil RR, Jose T, Babu R, Hwang GY, Kathalikkattil AC, Kim DW, Park DW, Appl. Catal. B: Environ., 182, 562 (2016)
  33. Miralda CM, Macias EE, Zhu M, Ratnasamy P, Carreon MA, ACS Catal., 2, 180 (2012)
  34. Yang LL, Yu L, Diao GQ, Sun M, Cheng G, Chen SY, J. Mol. Catal. A-Chem., 392, 278 (2014)
  35. Jose T, Hwang Y, Kim DW, Kim MI, Park DW, Catal. Today, 245, 61 (2015)
  36. Sharma N, Dhankhar SS, Nagaraja CM, Sustain. Energ. Fuels, 3, 2977 (2019)
  37. Ding M, Jiang H, ACS Catal., 8, 3194 (2018)
  38. Wang Z, Cohen SM, Chem. Soc. Rev., 38, 1315 (2009)
  39. Liang J, Chen RP, Wang XY, Liu TT, Wang XS, Huang YB, Cao R, Chem. Sci., 8, 1570 (2017)