화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.6, 1036-1041, June, 2020
CH4/CO2 separation from biogas stream using porous hydrophobic ceramic hollow fiber membrane contactors
E-mail:
Experiments were performed to separate CO2 from biogas using a ceramic hollow fiber membrane contactor (HFMC). CH4/CO2 mixed gas (34.5% CO2, CH4 balance) and monoethanolamine (MEA) were used. The influence of operating conditions, such as the gas flow rate, liquid flow rate, L/G ratio, CO2 partial pressure, and module type, on the CO2 removal efficiency and CO2 absorption flux was evaluated. As the gas flow rate increased, the CO2 removal efficiency decreased, while the CO2 absorption flux increased. The maximum CO2 removal efficiency was 96% at a gas flow rate of 0.1Nm3 h-1 while the maximum CO2 absorption flux was 7.5 X 10 3 molㆍm-2ㆍs-1 at a gas flow rate of 1Nm3 h-1. Moreover, the CO2 absorption flux and CO2 removal efficiency could be increased by more than 20% using the high-flux module.
  1. Lunghi P, Bove R, Desideri U, J. Power Sources, 131(1-2), 120 (2004)
  2. Bandyopadhyay A, Clean Technol. Environ. Policy, 13(2), 269 (2011)
  3. Yeon SH, Seo BK, Park YI, Lee GH, Korean Chem. Eng. Res., 39(6), 709 (2001)
  4. Hogan KB, Hoffman JS, Thompson AM, Nature, 354, 181 (1991)
  5. Lee SW, Kim EJ, Lee HJ, Park JH, Korean Chem. Eng. Res., 56(3), 297 (2018)
  6. Bove R, Lunghi P, Energy Conv. Manag., 47(11-12), 1391 (2006)
  7. Park YC, Lee JS, Moon JH, Min BM, Shim DM, Sung HJ, Korean J. Chem. Eng., 34(3), 921 (2017)
  8. Atchariyawut S, Jiraratananon R, Wang R, J. Membr. Sci., 304(1-2), 163 (2007)
  9. Luo C, Zheng Y, Xu Y, Ding H, Zheng C, Qin C, Feng B, Korean J. Chem. Eng., 32(5), 934 (2015)
  10. Atchariyawut S, Jiraratananon R, Wang R, Sep. Purif. Technol., 63(1), 15 (2008)
  11. Lantela J, Rasi S, Lehtinen J, Rintala J, Appl. Energy, 92, 307 (2012)
  12. Rasi S, Lantela J, Rintala J, Fuel, 115, 539 (2014)
  13. Cavenati S, Grande CA, Rodrigues AE, Energy Fuels, 19(6), 2545 (2005)
  14. Kim HJ, Hong SI, Korean J. Chem. Eng., 14(5), 382 (1997)
  15. Cavenati S, Grande CA, Rodrigues AE, Chem. Eng. Sci., 61(12), 3893 (2006)
  16. Jeong D, Yun M, Oh J, Yum I, Lee Y, Korean J. Chem. Eng., 27(3), 939 (2010)
  17. Nabian N, Ghoreyshi AA, Rahimpour A, Shakeri M, Korean J. Chem. Eng., 32(11), 2204 (2015)
  18. Ghasem N, Al-Marzouqi M, Duidar A, Sep. Purif. Technol., 98, 174 (2012)
  19. Lee HJ, Park YG, Kim MK, Lee SH, Park JH, Sep. Purif. Technol., 220, 189 (2019)
  20. Mansourizadeh A, Ismail AF, Abdullah MS, Ng BC, J. Membr. Sci., 355(1-2), 200 (2010)
  21. Bakeri G, Rezaei-DashtArzhandi M, Ismail AF, Matsuura T, Abdullah MS, Cheer NB, Korean J. Chem. Eng., 34(1), 160 (2017)
  22. Magnone E, Lee HJ, Che JW, Park JH, J. Ind. Eng. Chem., 42, 19 (2016)
  23. Lee HJ, Magnone E, Park JH, J. Membr. Sci., 494, 143 (2015)
  24. Lee HJ, Park JH, J. Membr. Sci., 518, 79 (2016)
  25. Yu XH, An L, Yang J, Tu ST, Yan JY, J. Membr. Sci., 496, 1 (2015)
  26. Lv YX, Yu XH, Tu ST, Yan JY, Dahlquist E, Appl. Energy, 97, 283 (2012)
  27. Kim YE, Choi JH, Yun SH, Nam SC, Yoon YI, Korean J. Chem. Eng., 33(12), 3465 (2016)
  28. Lee HJ, Binns M, Park SJ, Magnone E, Park JH, Korean J. Chem. Eng., 36(10), 1669 (2019)
  29. Zakeri A, Einbu A, Svendsen HF, Chem. Eng. Sci., 73, 285 (2012)
  30. Kim Y, Kim S, Kim J, Cho Y, Park H, Lee P, Park Y, Park H, Nam S, Membr. J., 28, 21 (2018)
  31. Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R, J. Membr. Sci., 380(1-2), 21 (2011)
  32. Li JL, Chen BH, Sep. Purif. Technol., 41(2), 109 (2005)