화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.5, 425-432, May, 2020
A Comparison Between Functions of Carbon Nanotube and Reduced Graphene Oxide and Respective Ameliorated Derivatives in Perovskite Solar Cells
E-mail:
The reduced graphene oxide (rGO) and carbon nanotube (CNT) components and their derivatives grafted with the irregioregular poly(3-dodecyl thio-phene) (rGO-g-PDDT and CNT-g-PDDT) and regioregular poly(3-hexylthiophene) (CNT-g-P3HT and CNT-g-P3HT) polymers were used to improve the morphological, optical, and photovoltaic features of CH3NH3PbI3 perovskite solar cells. The type of carbonic material (CNT or rGO) and regioregularity of grafts affected the cell performances. According to the photoluminescence lifetimes, although the grafted-CNT/rGO components improved the cell characteristics (15.3-20.5 ns), the corresponding bared nanostructures ruined them (3.0-4.9 ns). In similar conditions, via alteration of rGO to CNT, the average cell performance changed to 14.56 from 14.07% for PDDT-grafted systems and to 16.36 from 15.15% for P3HT-based ones. The self-ordering polymers such as regioregular P3HTs simultaneously induced the crystallinity to the polymeric and non-polymeric constituents. The best photovoltaic data including 22.73 mA/cm2, 75%, 0.96 V and 16.36% with the narrowest distributions were detected in the CH3NH3PbI3 + CNT-g-P3HT solar cells. Perovskite solar cells were perfectly modified with both rGO-g-P3HT and CNT-g-P3HT agents because of the lowest charge-transfer resistance values (93.2 and 90.1 Ω), the most intensified crystalline peaks, and the largest absorbances.
  1. Stranks SD, Snaith HJ, Nat. Nanotechnol., 10(5), 391 (2015)
  2. De Wolf S, Holovsky J, Moon SJ, Loper P, Niesen B, Ledinsky M, Haug FJ, Yum JH, Ballif C, J. Phys. Chem. Lett., 5, 1035 (2014)
  3. Deschler F, Price M, Pathak S, Klintberg LE, Jarausch DD, Higler R, Huttner S, et al., J. Phys. Chem. Lett., 5, 1421 (2014)
  4. Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang JTW, Stranks SD, Snaith HJ, Nicholas J, Nat. Phys., 11, 582 (2015)
  5. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ, Science, 342(6156), 341 (2013)
  6. Chen W, Wu YZ, Yue YF, Liu J, Zhang WJ, Yang XD, Chen H, Bi EB, Ashraful I, Gratzel M, Han LY, Science, 350(6263), 944 (2015)
  7. Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ, Nano Lett., 14, 5561 (2014)
  8. Bao Q, Loh KP, ACS Nano, 6, 3677 (2012)
  9. Guo CX, Guai GH, Li CM, Adv. Eng. Mater., 1, 448 (2011)
  10. Hu X, Chen L, Ji T, Zhang Y, Hu A, Wu F, Li G, Chen Y, Adv. Mater. Interfaces, 2, 150044 (2015)
  11. Ji T, Tan L, Hu X, Dai Y, Chen Y, Phys. Chem. Chem. Phys., 17, 4137 (2015)
  12. Yu D, Yang Y, Durstock M, Baek JB, Dai L, ACS Nano, 4, 5633 (2010)
  13. Wang Y, Zhang Y, Lu Y, Xu W, Mu H, Chen C, Qian H, Song J, Li S, Sun B, Cheng YB, Adv. Opt. Mater., 3, 1389 (2015)
  14. Li Z, Boix PP, Xing G, Fu K, Kulkarni SA, Batabyal SK, Xu W, Cao A, Sum TC, Mathews N, Wong LH, Nanoscale, 8, 6352 (2015)
  15. Wei Z, Chen H, Yan K, Zheng X, Yang S, J. Mater. Chem. A, 3, 24226 (2015)
  16. Mustonen K, Laiho P, Kaskela A, Susi T, Nasibulin AG, Kauppinen EI, Appl. Phys. Lett., 107, 143113 (2015)
  17. Li Z, Kulkarni SA, Boix PP, Shi E, Cao A, Fu K, Batabyal SK, et al., ACS Nano, 8, 6797 (2014)
  18. Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ, Nano Lett., 14, 5561 (2014)
  19. Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ, J. Phys. Chem. Lett., 5, 4207 (2014)
  20. Cai M, Tiong VT, Hreid T, Bell J, Wang H, J. Mater. Chem. A, 3, 2784 (2015)
  21. Lee J, Menamparambath MM, Hwang JY, Baik S, Chem. Sus. Chem., 8, 2358 (2015)
  22. Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Science, 345, 295 (2014)
  23. Zhou H, Shi Y, Dong Q, Zhang H, Xing Y, Wang K, Du Y, Ma T, J. Phys. Chem. Lett., 5, 3241 (2014)
  24. Xu X, Liu Z, Zuo Z, Zhang M, Zhao Z, Shen Y, Zhou H, Chen Q, Yang Y, Wang M, Nano Lett., 15, 2402 (2015)
  25. White CT, Todorov TN, Nature, 393(6682), 240 (1998)
  26. Novoselov KS, Geim AK, Morozov SV, Jiang DA, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
  27. Yan K, Wei Z, Li j, Chen H, Yi Y, Zheng X, Long X, Wang Z, Wang J, Xu J, Yang S, Small, 11, 2269 (2015)
  28. You P, Liu ZK, Tai QD, Liu SH, Yan F, Adv. Mater., 27(24), 3632 (2015)
  29. Tavakoli MM, Simchi A, Fan Z, Aashuri H, Chem. Commun., 52, 323 (2016)
  30. You P, Liu ZK, Tai QD, Liu SH, Yan F, Adv. Mater., 27(24), 3632 (2015)
  31. Tavakoli MM, Tavakoli R, Nourbakhsh Z, Waleed A, Virk US, Fan Z, Adv. Mater. Interfaces, 3, 150079 (2016)
  32. Wang JTW, Ball JM, Barea EM, Abate A, Alexander-Webber JA, et al., Nano Lett., 14, 724 (2013)
  33. Zhu ZL, Ma JA, Wang ZL, Mu C, Fan ZT, Du LL, Bai Y, Fan LZ, Yan H, Phillips DL, Yang SH, J. Am. Chem. Soc., 136(10), 3760 (2014)
  34. Tavakoli MM, Aashuri H, Simchi A, Fan Z, Phys. Chem. Chem. Phys., 17, 24412 (2015)
  35. Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y, Sun B, Nanoscale, 6, 10505 (2014)
  36. Lee DY, Na SI, Kim SS, Nanoscale, 8, 1513 (2016)
  37. Li W, Dong H, Guo X, Li N, Li J, Niu G, Wang L, J. Mater. Chem. A, 2, 20105 (2014)
  38. Agresti A, Pescetelli S, Taheri B, Del Rio Castillo AE, Cina L, Bonaccorso F, Di Carlo A, Chem. Sus. Chem., 9, 2609 (2016)
  39. Palma AL, Cina L, Pescetelli S, Agresti A, Raggio M, Paolesse R, Bonaccorso F, Di Carlo A, Nano Energy., 22, 349 (2016)
  40. Berhe TA, Su WN, Chen CH, Pan CJ, Cheng JH, Chen HM, Tsai MC, Chen LY, Dubale AA, Hwang BJ, Energy Environ. Sci., 9, 323 (2016)
  41. Li SS, Chang CH, Wang YC, Lin CW, Wang DY, Lin JC, Chen CC, Sheu HS, Chia HC, Wu WR, Jeng US, Energy Environ. Sci., 9, 1282 (2016)
  42. Seo MS, Jeong I, Park JS, Lee J, Han IK, Lee WI, Son HJ, Sohn BH, Ko MJ, Nanoscale, 8, 11472 (2016)
  43. Sun Y, Peng J, Chen Y, Yao Y, Liang Z, Sci. Rep., 7, 46193 (2017)