화학공학소재연구정보센터
Solar Energy, Vol.201, 259-267, 2020
The effect of wind on the temperature distribution of photovoltaic modules
This paper discusses the thermal aspect of two different types of PV modules. The PV modules are categorised into two major groups: Frameless and Framed modules, and designing structure. Apart from the framed structure, thermal behaviour and its implicit effect on the system is also the key factor of the analysis. Two similar classes of modules are relatively examined and thereafter, are compared with differently manufactured (structure-wise) modules. Here, the framed modules, Solarex (pc-Si) and the RWE Schott Solar (pc-Si) are optically similar; whereas the Solar watt (c-Si) and the Duna Solar (a-Si) are frameless modules. A parallel dichotomy is established on the basis of the quality of the modules being used by the energy industry and the thermal response of the modules at the given conditions. The assessment of the PV modules is based upon the angular orientation of wind, thermal diffusivity of surface, thermal conductivity, heat transfer coefficient, inertial effect of surface, drag force, skin friction, and the thermal behaviour at vicinity of PV surface. The energy equation of the thermal boundary layer over the flat plate is used for thermal profiling of the different PV surfaces. From the experimental measurement, the ambience temperature, surface temperature and wind speed have been determined. The qualitative investigation of geometrically as well as structurally different solar modules is performed with the help of ODE45 application. The flow of air is laminar for all the modules and the drag force varies from 1.45 x 10(-5) N to 2.10 x 10(-5) N. Friction loss due to wind flow is found to be least for the Solar watt, while the wind orientation of 10 degrees North of East keeps the temperature deviation of the surface from its ambience low for all the modules. The effect of the thermal boundary layer is relatively significant for the Solar watt and the RWE Schott solar modules. Hydrodynamic boundary layer formation has been demarcated from thermal boundary using Blasius and Pohlhausen's solutions for momentum and energy equations of fluid past a flat surface.