화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.142, No.7, 3645-3651, 2020
Hydrogen Stabilized RhPdH 2D Bimetallene Nanosheets for Efficient Alkaline Hydrogen Evolution
The design of catalysts with high activity and robust stability for alkaline hydrogen evolution reaction (HER) remains a great challenge. Here, we report an efficient catalyst of two-dimensional bimetallene hydrides, in which H atoms stabilize the rhodium palladium bimetallene. The system exists because of the introduction of H that is in situ chemically released from the formaldehyde solution during the synthesis. This provides a highly stable catalyst based on an unstable combination of metal elements. Density functional theory calculations show the H is confined by electronic interactions and the Miedema rule of reverse stability of the RhPd alloy. The obtained catalyst exhibits outstanding alkaline HER catalytic performance with a low overpotential of 40 mV at 10 mA cm(-2) and remarkable stability for over 10 h at 100 mA cm(-2). The experimental results show that the confined H improve the activity, while the ultrathin sheet-like morphology yields stability. Our work provides guidance for synthesizing high-activity catalysts by confining heteroatoms into the crystal lattice of bimetallene and also a very novel mechanism for the growth of bimetallene made of highly immiscible components.