화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.564, 296-302, 2020
Anion-regulated selective growth ultrafine copper templates in carbon nanosheets network toward highly efficient gas capture
Controlling micropore size is the core for synthesizing highly efficient adsorbents for gas adsorption and separation engineering. Porous carbon prepared by traditional methods usually lacks competitiveness due to the random micropore size or complex process. Herein, we report a novel strategy for synthesizing nitrogen doped carbons nanosheets (Cu-NDPC5) with unimodal ultra-micropore based on the metal-organic covalency and the anion regulated in situ copper template. The thickness of single Cu-NDPCs is about 4.2 nm. In the presence of Cl-, the porosity of Cu-NDPC5 can be tuned at 4.1 4.8 angstrom by adjusting the pyrolysis temperature. Among them, Cu-NDPC-800 has unique carbon nanosheets networks structure, ultrahigh surface area (2150 m(2) g(-1)), large micropore volume (0.92 cm(3) g(-1)) and abundant surface N doping (5.33%). As an adsorbent, it exhibits superhigh C2H2, C2H6, C3H8 and CO2 uptakes (6.7, 7.0, 11.4 and 4.4 mmol g(-1)) and corresponding x/CH4 or CO2/N-2 IAST selectivities (12.9, 17.8, 468.6, 4.3 and 17.1) under ambient conditions. Meanwhile, the Cu-NDPC-800 possesses excellent cyclic stability. (C) 2019 Elsevier Inc. All rights reserved.