화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.45, No.1, 64-79, 2020
A stacked interleaved DC-DC buck converter for proton exchange membrane electrolyzer applications: Design and experimental validation
Since the two last decades, hydrogen production has been attracting the attention of the scientific community thanks to its inherent very low pollution when energy coming from renewable energy sources (RESs) are used. However, it implies the use of DC/DC converters to interface source and load. These conversion systems must meet several requirements from current ripple point of view, energy efficiency, and performance to preserve the sustainability of hydrogen production. This article proposes the design and realization of a stacked interleaved buck converter to supply a proton exchange membrane electrolyzer. The converter is designed to ensure a low output current ripple and a suitable dynamic response to guarantee the reliability of the electrolyzer. A theoretical analysis of the converter, taking into account the dynamic model of the electrolyzer, and the design of the control system based both on feedforward and a feedback action is provided. The stability of the control system is discussed as well. The effectiveness of the model and the control algorithm has been verified by simulation and experimental results on a PEM electrolyzer at laboratory scale; the extension to higher power levels is discussed at the end. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.