화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.45, No.8, 5384-5394, 2020
Sustainable hydrogen production via LiH hydrolysis for unmanned air vehicle (UAV) applications
In the current study, an experimental approach for the further understanding of the LiH hydrolysis reaction for hydrogen production is considered. The experimental work has been undertaken under small scale conditions by utilising fixed bed reactors. The hydrolysis reaction has been studied at several oven temperatures (150 degrees C, 300 degrees C and 500 degrees C). The favourable driving potentials for the hydrolysis reactions were identified by the utilisation of the Gibbs free energy analysis. The main outcome of the study is the deceleration of the reaction pace due to the formation of the by-product layers during the reaction. At the initial stage, due to the contact of steam with the unreacted and fresh LiH surface, the reaction proceeds on a fast pace, while the formation of the layers tends to decelerate the diffusion of steam into the core of material, forcing the production step to be slower. The hydrogen yield was found to be more than 90% of the theoretical value for all the reaction temperatures. Finally, a scenario of a hybrid-electric propulsion system for Unmanned Aerial Vehicles (UAVs) including Li-ion battery, Proton Membrane Fuel Cell (PEMFC) and an on-board hydrogen production system based on LiH hydrolysis is introduced and studied. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.