화학공학소재연구정보센터
Catalysis Letters, Vol.150, No.3, 849-860, 2020
Enhanced Effect of Ni3Se4 Modified CdS Nanorod for Efficient Hydrogen Production
CdS semiconductor is an excellent photo-catalyst for water-splitting to produce hydrogen. In this study, a binary photo-catalyst Ni3Se4@CdS enhancing hydrogen evolution activity under visible light irradiation was successfully synthesized and their photo-catalytic performance was investigated in detail by a series of characterization technologies. Ni3Se4@CdS sample reveals the higher hydrogen production activity compared with single Ni3Se4 or CdS samples under visible light-driven due to the existence of Ni3Se4 nanoparticels efficiently inhibits the recombination of electron-hole pairs for CdS nanorods as well as improves optical absorption density. Meanwhile, Ni3Se4@CdS catalyst shows the smaller over-potential than CdS nanorods, which also is an important factor to improve photo-catalytic hydrogen generation performance. The loading of Ni3Se4 particles improves the optical absorption intensity of CdS nanorods and enhances the photo-current response. At the same tine, Ni3Se4@CdS composite exhibits the smaller impedance compared with single CdS. Additionally, the surface elements component and specific surface area of the resulting samples also are studied. Finally, based on a great deal of research results, the possible mechanism of photo-catalytic water-splitting is speculated. Graphic