화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.525, No.1, 155-161, 2020
Glioma-derived endothelial cells promote glioma cells migration via extracellular vesicles-mediated transfer of MYO1C
Extracellular vesicles (EV), as the intercellular information transfer molecules which can regulate the tumor microenvironment, promote migration and tumor progression. Previous studies reported that EV from endothelial cells was used to guide the fate and survival of gliomas, but many researches focus on normal human endothelial cells (NhEC) rather than tumor-derived endothelial cells. Our laboratory isolated human endothelial cells from glioma issue (GhEC). We have previously demonstrated that EV from GhEC and NhEC, which both can promote glioma stem cells (GSC) proliferation and tumorsphere formation in vitro and tumourigenicity in vivo by the transfer of CD9. However, NhEC-EV or GhEC-EV could suppress glioma cells ( GC) proliferation in vitro. It demonstrates the undifferentiated impact of EV. Here, we first compared GhEC-EV proteins with NhEC-EV (Screening criteria: GhEC-EV/NhEC-EV, FC > 1.5), and obtained 70 differential expression proteins, most of which were associated with invasion and migration. We found that GhEC or GhEC-EV preferred promoting GC migration than treating with NhEC or NhEC-EV. In terms of mechanism, we further revealed that EV-mediated transfer of MYO1C induced glioma cell LN229 migration. Knockdown of MYO1C in GhEC or GhEC-EV suppressed this effect. Overexpression of MYO1C promoted migration on the contrary. MYO1C was also detected in glioma cerebrospinal fluid (CSF), which is more suitable as a liquid biopsy biomarker and contributes to early diagnosis and monitoring in glioma. Our findings provide a new protein-MYO1C in EV to target tumor blood vessels, and bring a new point-cut to the treatment of gliomablastoma (GBM). (c) 2020 Elsevier Inc. All rights reserved.