화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.85, 161-169, May, 2020
LC.MS/MS based observation of Clostridium difficile inhibition by Lactobacillus rhamnosus GG
E-mail:
Clostridium difficile is a spore-forming obligate anaerobe that most commonly causes nosocomial disease, such as diarrhea and colitis. Although antibiotic treatment has been used for Clostridium difficile infection (CDI), its use can also lethally cause antibiotic-associated CDI with the risk of antibiotic resistance. Recently, to avoid these problems, probiotics therapies for CDI have been introduced and studied. However, the molecular mechanisms of C. difficile induced by probiotics, such as Lactobacillus rhamnosus GG (LGG), and associated pathways, have rarely been studied. Here, we co-cultured C. difficile and LGG, which is a promising candidate for treating CDI, in a transwell platform to profile metabolic and proteomic changes of C. difficile with mass spectrometric methods. In the co-cultured condition with LGG, energy generation pathways related to C. difficile growth, such as Stickland reactions and butyrate metabolism, were significantly inhibited, resulting in the decrease of growth rate. In particular, the inhibition of Stickland reactions had a negative effect on the toxin production of C. difficile. In addition, metabolic changes in purine biosynthesis that is known to play an important role in the life of bacteria were observed. Finally, we briefly discussed proteins involved in major iron uptake and electron transfer, as well as the chaperone proteins in bacteria that showed changes by LGG. These results demonstrate that metabolic alterations in C. difficile by LGG caused growth inhibition. Our in vitro co-culture model and multi-omics approach will not only provide better understanding of pathogen-probiotics interaction, but will also contribute to functional study, such as probiotics screening or probiotics engineering, for the therapy of disease caused by pathogenic bacteria.
  1. Davis MB, Zar FA, Moorthi KMLST, Bakkanagari SR, Clin. Infect. Dis., 45, 302 (2007)
  2. Leiner I, Carter RA, Buffie CG, Lewis BB, Pamer EG, Gobourne A, Ling L, Miller LC, Toussaint NC, J. Infect. Dis., 212, 1656 (2015)
  3. Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B, Huffnagle GB, Li JZ, Young VB, Nat. Commun., 5, 3114 (2014)
  4. Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, Kelly C, et al., Clin. Gastroenterol. Hepatol., 9, 1044 (2011)
  5. De Leon LM, Watson JB, Kelly CR, Clin. Gastroenterol. Hepatol., 11, 1036 (2013)
  6. Rolfe RD, J. Nutr., 130, 396S (2000)
  7. Ambalam P, Kondepudi KK, Balusupati P, Nilsson I, Wadstrom T, Ljungh A, J. Appl. Microbiol., 119(6), 1672 (2015)
  8. Forssten SD, Roytio H, Hibberd AA, Ouwehand AC, Microb. Ecol. Health Dis., 26, 27988 (2015)
  9. Gareau MG, Sherman PM, Walker WA, Nat. Rev. Gastroenterol. Hepatol., 7, 503 (2010)
  10. Huebner ES, Surawicz CM, Gastroenterol. Clinics, 35, 355 (2006)
  11. Trejo FM, Minnaard J, Perez PF, De Antoni GL, Anaerobe, 12, 186 (2006)
  12. Valdes-Varela L, Hernandez-Barranco AM, Ruas-Madiedo P, Gueimonde M, Front. Microbiol., 7, 738 (2016)
  13. Naaber P, Smidt I, Stsepetova J, Brilene T, Annuk H, Mikelsaar M, J. Med. Microbiol., 53, 551 (2004)
  14. Patti GJ, Yanes O, Siuzdak G, Nat. Rev. Mol. Cell Biol., 13, 263 (2012)
  15. Wark AW, Lee J, Kim S, Faisal SN, Lee HJ, J. Ind. Eng. Chem., 16(2), 169 (2010)
  16. Nagy I, Desair J, Marchal K, De Keersmaecker SCJ, Verhoeven TLA, Vanderleyen J, FEMS Microbiol. Lett., 259, 89 (2006)
  17. Im JS, Lee SK, Bai BC, Lee YS, J. Ind. Eng. Chem., 18(1), 325 (2012)
  18. Banerjee P, Merkel GJ, Bhunia AK, Gut Pathog., 1, 8 (2009)
  19. Fairchild JN, Horvath K, Gooding JR, Campagna SR, Guiochon G, J. Chromatogr. A, 1217, 8161 (2010)
  20. Song WS, Park HM, Ha JM, Shin SG, Park HG, Kim J, Zhang T, Ahn DH, et al., Sci. Rep., 8, 11088 (2018)
  21. Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD, J. Chromatogr. A, 1125, 76 (2006)
  22. Ephraim EEP, Schultz RD, Safdar N, Br. Microbiol. Res. J., 3, 165 (2013)
  23. Rees CA, Shen A, Hill JE, J. Chromatogr. B, 1039, 8 (2016)
  24. Hofmann JD, Otto A, Berges M, Biedendieck R, Michel AM, Becher D, Jahn D, Neumann-Schaal M, Front. Microbiol., 9, 1970 (2018)
  25. Neumann-Schaal M, Hofmann JD, Will SE, Schomburg D, BMC Microbiol., 15, 281 (2015)
  26. Jenior ML, Leslie JL, Young VB, Schloss PD, mSystems, 2, e00063 (2017)
  27. Zhang Y, Morar M, Ealick SE, Cell. Mol. Life Sci., 65, 3699 (2008)
  28. Jenkins A, Cote C, Twenhafel N, Merkel T, Bozue J, Welkos S, Infect. Immun., 79, 153 (2011)
  29. Mei JM, Nourbakhsh F, Ford CW, Holden DW, Mol. Microbiol., 26, 399 (1997)
  30. Polissi A, Pontiggia A, Feger G, Altieri M, Mottl H, Ferrari L, Simon D, Infect. Immun., 66, 5620 (1998)
  31. Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, Frost E, McDonald LC, The Lancet, 366, 1079 (2005)
  32. Bouillaut L, Dubois T, Sonenshein AL, Dupuy B, Res. Microbiol., 166, 375 (2015)
  33. Lau CKY, Krewulak KD, Vogel HJ, Fems Microbiol. Rev., 40, 273 (2015)
  34. Sestok AE, Linkous RO, Smith AT, Metallomics, 10, 887 (2018)
  35. Herrmann G, Jayamani E, Mai G, Buckel W, J. Bacteriol., 190, 784 (2008)
  36. Yoch DC, Valentine RC, Annu. Rev. Microbiol., 26, 139 (1972)
  37. Lee S, Sowa ME, Watanabe YH, Sigler PB, Chiu W, Yoshida M, Tsai FTF, Cell, 115, 229 (2003)
  38. Gamer J, Bujard H, Bukau B, Cell, 69, 833 (1992)