화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.2, 208-214, April, 2020
수분 제거를 위한 식물세포 Taxus chinensis의 마이크로웨이브를 이용한 건조 특성
Characteristics of Microwave-Assisted Drying of Plant Cells of Taxus chinensis for Moisture Removal
E-mail:
초록
본 연구에서는 식물세포 Taxus chinensis로부터 수분 제거를 통한 바이오매스 보관 및 추출 효율 향상을 위하여, 마이크로웨이브를 이용한 건조의 특성 및 메커니즘을 조사하였다. 마이크로웨이브 파워가 100, 200, 300 W로 증가함에 따라 수분의 제거 효율은 증가하였다. 실험 데이터를 대표적 동역학적 건조 모델에 적용할 때, Page 모델과 modified Page 모델이 가장 적합한 것으로 결정되었다. 열역학적 파라미터는 마이크로웨이브를 이용한 건조의 자발적 및 흡열 특성을 나타내었으며, 건조 과정에서 무질서도는 증가함을 알 수 있었다. 마이크로웨이브 파워(100~300 W)가 증가함에 따라 수분의 유효확산계수(3.445 × 10-9~7.163 × 10-7 m2/s) 및 대류물질전달계수(3.1529 × 10-5~1.2895 × 10-2 m/s)가 증가하였다. 작은 비오트 수(0.3890~0.7198)를 고려할 때, Taxus chinensis의 건조 진행은 외부 확산에 의해 조절됨을 알 수 있었다.
In this study, the characteristics and mechanism of microwave-assisted drying were investigated to improve the efficiency of the storage and extraction of biomass through the removal of moisture from plant cell Taxus chinensis. The efficiency of microwave-assisted drying increased with increasing microwave power. When the experimental data were fitted to typical drying kinetic models, the page and modified Page models were the most appropriate. The microwave-assisted drying was determined to be a spontaneous endothermic process, and randomness increased during the drying process. The effective diffusion coefficient (3.445 × 10-9~7.163 × 10-7 m2/s) and mass transfer coefficient (3.1529 × 10-5~1.2895 × 10-2 m/s) increased with increasing microwave power. The small Biot number (0.3890~0.7198) indicated that the mass transfer process was externally controlled.
  1. Kim TW, Kim JH, Korean J. Chem. Eng., 33(11), 3175 (2016)
  2. Kim YS, Kim JH, J. Chem. Thermodyn., 130, 104 (2019)
  3. Lee SH, Kim JH, Process Biochem., 76, 187 (2019)
  4. Kang HJ, Kim JH, Biotechnol. Bioproc. Eng., 24, 513-521 (2019).
  5. Park GY, Kim GJ, Kim JH, J. Ind. Eng. Chem., 21, 151 (2015)
  6. Kim JH, Lim CB, Kang IS, Hong SS, Lee HS, Korean J. Biotechnol. Bioeng., 16, 337 (2000)
  7. Lee JY, Kim JH, Korean J. Chem. Eng., 28(7), 1561 (2011)
  8. Hyun JE, Kim JH, Korean J. Biotechnol. Bioeng., 23, 281 (2008)
  9. Kim JH, Park HB, Gi US, Kang IS, Choi HK, Hong SS, Korean J. Biotechnol. Bioeng., 16, 233 (2001)
  10. Gi US, Min B, Lee JH, Kim JH, Korean J. Chem. Eng., 21(4), 816 (2004)
  11. Lee JY, Kim JH, Process Biochem., 48(3), 545 (2013)
  12. Li Y, Lei Y, Zhang LB, Peng JH, Li CL, Trans. Nonferrous Met. Soc. China, 21, 202 (2011)
  13. Kim HS, Chae YB, Jung SB, Jang YN, J. Miner. Soc. Korea, 21, 193 (2008)
  14. Kassem AS, Shokr AZ, EI-Mahdy AR, Aboukarima AM, Hamed EY, J. Saudi Soc. Agr. Sci., 10, 33 (2011)
  15. Cheung YC, Wu JY, Biochem. Eng. J., 79, 214 (2013)
  16. Cheung YC, Siu KC, Wu JY, Food Bioprocess Technol., 6, 2659 (2013)
  17. Saxena DK, Sharma SK, Sambi SS, Pol. J. Chem. Technol., 14, 29 (2012)
  18. Kim HS, Kim JH, Process Biochem., 56, 163 (2017)
  19. Jang WS, Kim JH, Biotechnol. Bioproc. Eng., 24, 529 (2019)
  20. Page GE, MS Dissertation, Purdue University, West Lafayette, Indiana, USA (1949).
  21. White GM, Loewer TC, Ross IJ, Trans. Am. Soc. Agric. Eng., 23, 224 (1978)
  22. Henderson SM, Pabis S, J. Agr. Eng. Res., 6, 169 (1961)
  23. Chinweuba DC, Nwakuba RN, Okafor VC, Am. J. Food. Sci. Nutr. Res., 3, 1 (2016)
  24. Saha P, Chowdhury S, Insight into Adsorption Thermodynamics (2011).
  25. Rakotondramasy-Rabesiaka L, Havet JL, Porte C, Fauduet H, Sep. Purif. Technol., 76(2), 126 (2010)
  26. Sahin AJ, Dincer I, Yilbas BS, Hussain MM, J. Heat Mass Transf., 45, 1757 (2002)
  27. Hats H, Saeki S, Kimura T, Sugahara Y, Kuroda K, Chem. Mater., 11, 1110 (1999)
  28. Darvishi H, Asl AR, Asghari A, Najafi G, Gazori HA, J. Food Process Technol., 4, 1 (2013)
  29. Crank J, The Mathematics of Diffusion, 2nd ed., 89-103, Clarendon Press, Oxford, UK (1975).
  30. Dincer I, Hussain MM, Int. J. Heat Mass Transf., 45(15), 3065 (2002)
  31. Prasad BE, Pandey KK, Eur. J. Wood Prod., 70, 353 (2012)
  32. Ozken IA, Akbudak B, Akbudak N, J. Food Eng., 78, 577 (2007)
  33. Lee H, Han CS, Drying and Quality Characteristics of Agricultural and Fishery Products Using Far Infrared Rays, MS Dissertation, Chungbuk National University, Cheongju, Korea (2009).
  34. Guine RPE, Barroca MJ, Silva V, Int. J. Food Prop., 16, 251 (2013)
  35. Sharma GP, Prasad S, J. Food Eng., 65(4), 609 (2004)
  36. Mirzaee E, Rafiee S, Keyhani A, Emam-Djomeh, Res. Agr. Eng., 55, 114 (2009)
  37. Sander A, Kardum JP, Skansi D, Chem. Biochem. Eng. Q., 15, 131 (2001)