화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.2, 177-185, March, 2020
고온 열처리가 폴리페닐렌 설파이드 필름의 미세구조에 미치는 영향
Effects of High Temperature Treatment on the Microstructure of Poly(phenylene sulfide) Film
E-mail:
초록
220 °C 에서 17일까지의 열처리가 선형성이 큰 순수 폴리페닐렌 설파이드(PPS) 수지를 용융압착하여 제조한 PPS 필름의 미세구조에 미치는 영향을 색차분석기, X-선 광전자 분광분석기(XPS), FTIR 분광분석기, 시차주사열량계, X-선 회절분석기를 사용하여 분석하였다. 열처리시간이 길어짐에 따라 PPS 필름은 점차 갈색으로 변하였으며 미열처리 시료와의 색차가 커졌다. XPS와 FTIR 분석 결과, 열처리에 의해 PPS 분자사슬 사이에 산화가교가 되었다가 이어서 벤젠링 가교가 형성되었다. 열처리에 의해 DSC 1차 승온 시의 첫 번째 용융온도는 높아졌지만 두 번째 용융온도는 거의 비슷하였으며, 용융 후 강온 시의 용융결정화 온도는 낮아졌다. 또한 열처리시간이 길어지면 승온 시의 용융열은 증가하고 강온 시의 용융 결정화열은 감소하는 경향을 나타내었지만, 열처리에 의해 PPS 결정구조가 변하지는 않았다.
Effects of the heat treatment at 220 °C for up to 17 days on the microstructure of poly(phenylene sulfide) (PPS) films prepared by melt compression of virgin PPS resins of high linearity were analyzed by using color difference analyzer, X-ray photoelectron spectroscope (XPS), FTIR spectrometer, difference scanning calorimeter, and X-ray diffractometer. As the heat treatment time increased, the color of the PPS film gradually turned brown and the color difference between heat-treated and untreated sample increased. XPS and FTIR analysis confirmed that heat treatment caused thermal oxidation, followed by cross-linking of the PPS chains. The heat treatment moved the first melting temperature during the first DSC heating scan to a higher temperature while the second melting temperature remained almost constant. However, the melt crystallization temperature during the cooling scan was lowered by heat treatment. Although the heat of melting increased and the heat of melt crystallization decreased with the heat-treatment time, the crystal structure of PPS was not affected by the heat treatment.
  1. Hearle JWS, Editor, High-Performance Fibres, Woodhead Publishing Ltd., USA, p 274 (2001).
  2. Geibel JF, Campbell RW, Comprehensive Polymer Science, Pergamon Press, Oxford, p 504 (1990).
  3. Seymour RB, Kirshenbaum GS, Editors, High Performance Polymers: Their Origin and Development, Elsevier Science Publishing Co., NY, p 135 (1986).
  4. Hopkins J, Badyal JPS, Macromol., 27, 5498 (1994)
  5. Port AB, Still RH, Polym. Degrad. Stabil., 1, 193 (1979)
  6. Das PK, DesLauriers PJ, Fahey DR, Wood FK, Cornforth FJ, Polym. Degrad. Stabil., 48, 11 (1995)
  7. Tsuchida E, Shouji E, Yamamoto K, Macromol, 26, 7144 (1993)
  8. Gies AP, Geibel JF, Hercules DM, Macromol., 43, 943 (2010)
  9. Johansson E, Nyborg L, Surf. Interface Anal., 35, 375 (2003)
  10. Lopez GP, Castner DG, Ratner BD, Surf. Interface Anal., 17, 267 (1991)
  11. Bayon R, Mafftiotte C, Herrero J, Thin Solid Films, 353(1-2), 100 (1999)
  12. Morant C, Andrey J, Prieto P, Mendiola D, Sanz JM, Elizalde E, Phys. Stat. Sol., 203, 1069 (2006)
  13. Chambrion P, Suzuki T, Zhang ZG, Kyotani T, Tomita A, Energy Fuels, 11(3), 681 (1997)
  14. Sardar SMA, Khawaja EE, Masoudi HM, Bastl Z, Subrt J, Galikova A, Pola J, J. Anal. Appl. Pyrolysis, 73, 145 (2005)
  15. Tsuchida E, Yamamoto K, Nishide H, Yoshida S, Jikei M, Macromol., 23, 2101 (1990)
  16. Mai KC, Mei Z, Xu JJ, Zeng HM, J. Appl. Polym. Sci., 69(4), 637 (1998)
  17. Mai KC, Mei Z, Xu JR, Zeng HM, J. Appl. Polym. Sci., 63(8), 1001 (1997)
  18. Napolitano R, Pirozzi B, Salvione A, Macromol., 32, 7682 (1999)
  19. Alexander LE, X-ray Diffraction Methods in Polymer Science, John Wiley & Sons, Inc., New York, p 423 (1969).