화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.3, 117-122, March, 2020
Li 도핑된 ZnSnO 박막 트랜지스터의 전기 및 광학적 특성에 대한 고속 중성자 조사의 영향
Influence of Fast Neutron Irradiation on the Electrical and Optical Properties of Li Doped ZnSnO Thin Film Transistor
E-mail:
The effects of fast neutron irradiation on the electrical and optical properties of Li (3 at%) doped ZnSnO (ZTO) thin films fabricated using a sol-gel process are investigated. From the results of Li-ZTO TFT characteristics according to change of neutron irradiation time, the saturation mobility is found to increase and threshold voltage values shift to a negative direction from 1,000 s neutron irradiation time. X-ray photoelectron spectroscopy analysis of the O 1s core level shows that the relative area of oxygen vacancies is almost unchanged with different irradiation times. From the results of band alignment, it is confirmed that, due to the increase of electron carrier concentration, the Fermi level (EF) of the sample irradiated for 1,000 s is located at the position closest to the conduction band minimum. The increase in electron concentration is considered by looking at the shallow band edge state under the conduction band edge formed by fast neutron irradiation of more than 1,000 s.
  1. Minami T, Sato H, Nanto H, Takata S, Jpn. J. Appl. Phys., 24, 781 (1985)
  2. Ziegler E, Heinrich A, Oppermann H, Stoever G, Phys. Status Solidi, 66, 636 (1981)
  3. Hagemark KI, J. Solid State Chem., 16, 293 (1976)
  4. Kim SJ, Yoon SH, Kim HJ, Jpn. J. Appl. Phys., 53, 02BA02 (2014)
  5. Cho IH, Park HW, Chung KB, Kim CJ, Jun BH, Semicond. Sci. Technol., 33, 085004 (2018)
  6. International Atomic Energy Agency, Neutron Transmutation Doping of Silicon at Research Reactors, IAEATECDOC- 1681, IAEA, Vienna (2012).
  7. Lv L, Li P, Ma X, Liu L, Yang L, Zhou X, Zhang J, Cao Y, Bi Z, Jiang T, Zhu Q, Hao Y, IEEE Trans. Nucl. Sci., 64, 643 (2017)
  8. Reisman A, Walters M, Kegel GHR, J. Electron. Mater., 20, 935 (1991)
  9. Polyakov AY, Smirnov NB, Govorkov AV, et al., Phys. B, 376-377, 523 (2006)
  10. Kim JJ, Ha JM, Lee HM, Raza HS, Park JW, Cho SO, ACS Appl. Mater. Interfaces, 8, 19192 (2016)
  11. Moon HJ, Jung SH, Ryu MK, Cho KI, Yun EJ, Bae BS, J. Korean Phys. Soc., 60, 254 (2012)
  12. Cho IH, Jo KI, Choi JH, Park HW, Kim CJ, Jun BH, Korean J. Mater. Res., 27(4), 216 (2017)
  13. Cho IH, Park HW, Kim CJ, Jun BH, Korean J. Mater. Res., 27(6), 345 (2017)
  14. Moon YM, Lee S, Moon DY, Kim WS, Kang BW, Park JW, Surf. Coat. Technol., 205, 109 (2010)
  15. Ahn BD, Park JS, Chung KB, Appl. Phys. Lett., 105, 163505 (2014)
  16. Kwon S, Park HW, Chung KB, J. Electron. Mater., 46, 1210 (2017)
  17. Petti L, Munzenrieder N, Vogt C, Faber H, Buthe L, Cantarella G, Bottacchi F, Anthopoulos TD, Troster G, Appl. Phys. Rev., 3, 021303 (2016)
  18. Kim YJ, Yang BS, Oh S, Han SJ, Lee HW, Heo J, Jeong JK, Kim HJ, ACS Appl. Mater. Interfaces, 5, 3255 (2013)
  19. Tak YJ, Ahn BD, Park SD, Kim SJ, Song AR, Chung KB, Kim HJ, Sci. Rep., 6, 21869 (2016)
  20. Park HW, Park JS, Lee JH, Chung KB, Electrochem. Solid State Lett., 15(4), H133 (2012)
  21. Ahn BD, Choi DW, Choi C, Park JS, Appl. Phys. Lett., 105, 092103 (2014)