화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.3, 249-256, March, 2020
Direct Solvent-Free Modification of the Inner Wall of the Microchip for Rapid DNA Extraction with Enhanced Capturing Efficiency
E-mail:,
Nucleic acid (NA) extraction and purification are one of the crucial steps for NA-based molecular diagnosis. However, the currently developed methods are still suffering from many issues including long process time, complicated steps, requirement of trained personnel and potential inhibition caused by chaotropic agents and/ or residual reagents. Herein, a surface-modified NA extraction microchip (SNC) is newly fabricated by introducing poly(2-dimethylaminomethyl styrene) (pDMAMS) film engaged directly on the microchip surface via initiated chemical vapor deposition (iCVD) process. The positively charged SNC inner surface could directly capture the negatively charged NA efficiently and its performance is confirmed by fluorescence microscopy and X-ray photoelectron spectroscopy. The developed SNC exhibits the deoxyribonucleic acid (DNA) capture efficiency higher than 92% regardless of initial DNA concentration in range of 20 ng/μL to 0.01 ng/μL. With this versatile DNA-capturing surface, the genomic DNAs of Escherichia Coli O157:H7 (E. coli O157:H7) is successfully extracted directly from cell lysate in the SNC with higher than 90% of efficiency within 30 min. The extraction time can be reduced to at least of 10 min maintaining extraction efficiency higher than 50%. Furthermore, the genomic DNAs are directly extracted using the SNC without loss from various real samples including juice, milk and blood serum. The proposed SNC enables us to perform an one-step NA extraction for molecular diagnosis and has the potential to be integrated into a micro-total analysis in the fields of point-of-care diagnosis.
  1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P, Nature, 451, 990 (2008)
  2. Centers for Disease Control and Prevention, CDC2016, Vol. 2016.
  3. Tang YW, Procop GW, Persing DH, Clin. Chem., 43, 2021 (1997)
  4. Procop GW, Clin. Infectious Diseases, 45, S99 (2007)
  5. Tan SC, Yiap BC, J. Biomed. Biotechnol., 2009, 574398 (2009)
  6. Kim J, Johnson M, Hill P, Gale BK, Integr. Biol., 1, 574 (2009)
  7. Wright JJ, Lee S, Zaikova E, Walsh DA, Hallam SJ, J. isualized Experiments : JoVE, 1352 (2009).
  8. Cao W, Easley CJ, Ferrance JP, Landers JP, Anal. Chem., 78, 7222 (2006)
  9. Petralia S, Sciuto EL, Conoci S, Analyst, 142, 140 (2017)
  10. Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, et al., Proc. Natl. Acad. Sci., 103, 19272 (2006)
  11. Wu Q, Bienvenue JM, Hassan BJ, Kwok YC, Giordano BC, Norris PM, Landers JP, Ferrance JP, Anal. Chem., 78, 5704 (2006)
  12. Witek MA, Hupert ML, Park DSW, Fears K, Murphy MC, Soper SA, Anal. Chem., 80, 3483 (2008)
  13. Kim J, Gale BK, Lab Chip, 8, 1516 (2008)
  14. da Silva RJ, Maciel BG, Medina-Llamas JC, Chavez-Guajardo AE, Alcaraz-Espinoza JJ, Pinto de Melo C, Anal. Biochem., 575, 27 (2019)
  15. Cady NC, Stelick S, Batt CA, Biosens. Bioelectron., 19, 59 (2003)
  16. Price CW, Leslie DC, Landers JP, Lab Chip, 9, 2484 (2009)
  17. Ham HO, Liu Z, Lau KHA, Lee H, Messersmith PB, Angew. Chem.-Int. Edit., 50, 732 (2011)
  18. Hagan KA, Reedy CR, Uchimoto ML, Basu D, Engel DA, Landers JP, Lab Chip, 11, 957 (2011)
  19. Kendall EL, Wienhold E, DeVoe DL, Biomicrofluidics, 8, 044109 (2014)
  20. Shin Y, Lim SY, Lee TY, Park MK, Sci. Rep., 5, 14127 (2015)
  21. Agrawal P, Dorfman KD, Lab Chip, 19, 281 (2019)
  22. Zhang L, Ding B, Chen Q, Feng Q, Lin L, Sun J, TrAC Trends Anal. Chem., 94, 106 (2017)
  23. Gan W, Gu Y, Han J, Li CX, Sun J, Liu P, Anal. Chem., 89, 3568 (2017)
  24. You JB, Kim YT, Lee KG, Choi Y, Choi S, Kim CH, Kim KH, Chang SJ, Lee TJ, Lee SJ, Im SG, Adv. Healthc. Mater., 6, 170064 (2017)
  25. Choi Y, Kim YT, You JB, Jo SH, Lee SJ, Im SG, Lee KG, Food Chem., 270, 445 (2019)
  26. You JB, Kang K, Tran TT, Park H, Hwang WR, Kim JM, Im SG, Lab Chip, 15, 1727 (2015)
  27. Kim SH, Lee HR, Yu SJ, Han ME, Lee DY, Kim SY, Ahn HJ, Han MJ, Lee TI, Kim TS, Kwon SK, Im SG, Hwang NS, Proc. Natl. Acad. Sci., 112, 15426 (2015)
  28. Jang BC, Seong H, Kim SK, Kim JY, Koo BJ, Choi J, Yang SY, Im SG, Choi SY, ACS Appl. Mater. Interfaces, 8, 12951 (2016)
  29. Yu SJ, Pak K, Kwak MJ, Joo M, Kim BJ, Oh MS, Baek J, Park H, Choi G, Kim DH, Choi J, Choi Y, Shin J, Moon H, Lee E, Im SG, Adv. Eng. Mater., 20, 170062 (2018)
  30. Liu Y, Shen L, Langmuir, 24(20), 11625 (2008)
  31. Redlich O, Peterson DL, J. Phys. Chem., 63, 1024 (1959)
  32. Belton GR, Metall. Mater. Trans. B, 7, 35 (1976)
  33. Zhang X, Servos MR, Liu JW, Langmuir, 28(8), 3896 (2012)
  34. Haghi AK, Pogliani L, Castro EA, Balkose D, Mukbaniani OV, Chia CH, Applied Chemistry and Chemical Engineering, Apple Academic Press, 2017.
  35. Schrader C, Schielke A, Ellerbroek L, Johne R, J. Appl. Microbiol., 113(5), 1014 (2012)