화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.2, 81-86, February, 2020
수열합성법으로 제막한 MoO3 나노 구조체를 정공수송층으로 갖는 페로브스카이트 태양전지 특성분석
Characteristics of Perovskite Solar Cell with Nano-Structured MoO3 Hole Transfer Layer Prepared by Hydrothermal Synthesis
E-mail:
MoO3 metal oxide nanostructure was formed by hydrothermal synthesis, and a perovskite solar cell with an MoO3 hole transfer layer was fabricated and evaluated. The characteristics of the MoO3 thin film were analyzed according to the change of hydrothermal synthesis temperature in the range of 100 °C to 200 °C and mass ratio of AMT : nitric acid of 1 : 3 ~ 15 wt%. The influence on the photoelectric conversion efficiency of the solar cell was evaluated. Nanorod-shaped MoO3 thin films were formed in the temperature range of 150 °C to 200 °C, and the chemical bonding and crystal structure of the thin films were analyzed. As the amount of nitric acid added increased, the thickness of the thin film decreased. As the thickness of the hole transfer layer decreased, the photoelectric conversion efficiency of the perovskite solar cell improved. The maximum photoelectric conversion efficiency of the perovskite solar cell having an MoO3 thin film was 4.69 % when the conditions of hydrothermal synthesis were 150 °C and mass ratio of AMT : nitric acid of 1 : 12 wt%.
  1. Kojima A, Teshima K, Shirai Y, Miyasaka T, J. Am. Chem. Soc., 131(17), 6050 (2009)
  2. Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ, Yang TY, Noh JH, Seo J, Nature, 567(7749), 511 (2019)
  3. Pham ND, Tiong VT, Chen P, Wang L, Wilson GJ, Bell J, Wang H, J. Mater. Chem. A, 5, 5195 (2017)
  4. Shao Y, Xiao Z, Bi C, Yuan Y, Huang J, Nat. Commun., 5, 5784 (2014)
  5. Chen W, Wu YZ, Yue YF, Liu J, Zhang WJ, Yang XD, Chen H, Bi EB, Ashraful I, Gratzel M, Han LY, Science, 350(6263), 944 (2015)
  6. Kim JH, Liang PW, Williams ST, Cho N, Chueh CC, Glaz MS, Ginger DS, Jen AKY, Adv. Mater., 27(4), 695 (2015)
  7. Oku T, Motoyoshi R, Fujimoto K, Akiyama T, Jeyadevan B, Cuya J, J. Phys. Chem. Solids, 72, 1206 (2011)
  8. Chatterjee S, Pal AJ, J. Phys. Chem. C, 120, 1428 (2016)
  9. Zilberberg K, Trost S, Meyer J, Kahn A, Behrendt A, Lutzenkirchen-Hecht D, Frahm R, Riedl T, J. Mater. Chem. C, 21, 4776 (2011)
  10. Mai L, Yang F, Zhao Y, Xu X, Xu L, Hu B, Luo Y, Liu H, Mater. Today, 14, 346 (2011)
  11. Lin SY, Wang CM, Kao KS, Chen YC, Liu CC, J. Sol-Gel Sci. Technol., 53, 51 (2010)
  12. Dhanasankar M, Purushothaman KK, Muralidharan G, Appl. Surf. Sci., 257(6), 2074 (2011)
  13. Khademi A, Azimirad R, Zavarian AA, Moshfegh AZ, J. Phys. Chem. C, 113, 19298 (2009)
  14. Farsi H, Gobal F, Raissi H, Moghiminia S, J. Solid State Electrochem, 14, 643 (2010)
  15. Sayede AD, Amriou T, Pernisek M, Khelifa B, Mathieu C, Chem. Phys., 316, 72 (2005)
  16. Kim DY, Subbiah J, Sarasqueta G, So F, Ding H, Irfan, Gao Y, Appl. Phys. Lett., 95, 093304 (2009)
  17. Ivanova T, Gesheva KA, Popkirov G, Ganchev M, Tzvetkova E, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 119, 232 (2005)
  18. Patil RS, Uplane MD, Patil PS, Appl. Surf. Sci., 252(23), 8050 (2006)
  19. Miyata N, Suzuki T, Ohyama R, Thin Solid Films, 281-282, 218 (1996)
  20. Kullman L, Azens A, Granqvist CG, Sol. Energy Mater. Sol. Cells, 61(2), 189 (2000)
  21. Patil PS, Kawar RK, Sadale SB, Inamdar AI, Mahajan SS, Sol. Energy Mater. Sol. Cells, 90(11), 1629 (2006)
  22. Maheshwari N, Muralidharan G, Appl. Surf. Sci., 416, 461 (2017)
  23. Wang Y, Jin F, Sasaki M, Wahyudiono, Wang F, Jing Z, Goto M, AIChE J., 59, 6 (2013)
  24. Moulder JF, Stickle WF, Sobol PE, Bombem KD, p. 112, Eds. J. Chastain, PerkinElmer Corporation, Minnesota, USA (1992).
  25. Julien C, Khelfa A, Hussain OM, Nazri GA, J. Cryst. Growth, 156, 235 (1995)