화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.2, 61-67, February, 2020
비화학양론적 Bi1±xFeO3±δ와 Ti가 첨가된 BiFeO3의 소결조건에 따른 결정구조와 미세구조 변화
Crystal Structure and Microstructure Variation of Nonstoichiometric Bi1±xFeO3±δ and Ti-doped BiFeO3 Ceramics under Various Sintering Conditions
E-mail:
BiFeO3 with perovskite structure is a well-known material that has both ferroelectric and antiferromagnetic properties called multiferroics. However, leaky electrical properties and difficulty of controlling stoichiometry due to Bi volatility and difficulty of obtaining high relative density due to high dependency on the ceramic process are issues for BiFeO3 applications. In this work we investigated the sintering behavior of samples with different stoichiometries and sintering conditions. To understand the optimum sintering conditions, nonstoichiometric Bi1±xFeO3±δ ceramics and Ti-doped Bi1.03Fe1-4x/3TixO3 ceramics were synthesized by a conventional solid-state route. Dense single phase BiFeO3 ceramics were successfully fabricated using a two-step sintering and quenching process. The effects of Bi volatility on microstructure were determined by Bi-excess and Ti doping. Bi-excess increased grain size, and Ti doping increased sintering temperature and decreased grain size. It should be noted that Ti-doping suppressed Bi volatility and stabilized the BiFeO3 phase.
  1. Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe M, Phys. Rev. B, 71, 014113 (2005)
  2. Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM, Phys. Rev. B, 71, 014113 (2005)
  3. Martin LW, Crane SP, Chu YH, Holcomb MS, Gajek M, Huijben M, Yang CH, Balke N, Ramesh R, J. Phys. Condens. Matter, 20, 434220 (2008)
  4. Lee Y, Liu ZQ, Heron JT, Clarkson JD, Hong J, Ko C, Biegalski MD, Aschauer U, Hsu SL, Nowakowski ME, Wu J, Nat. Commun., 6, 5959 (2015)
  5. Heron JT, Bosse JL, He Q, Gao Y, Trassin M, Ye L, Clarkson JD, Wang C, Liu J, Salahuddin S, Ralph DC, Schlom DG, Iniguez J, Huey BD, Ramesh R, Nature, 516(7531), 370 (2014)
  6. Nan CW, Bichurin MI, Dong S, Viehland D, Srinivasan G, J. Appl. Phys., 103, 1 (2008)
  7. Fiebig M, Lottermoser T, Frohlich D, Goltsev AV, Pisarev RV, Nature, 419, 818 (2002)
  8. Selbach SM, Tybell T, Einarsrud MA, Grande T, Adv. Mater., 20(19), 3692 (2008)
  9. Selbach SM, Tybell T, Einarsrud MA, Grande T, J. Solid State Chem., 183, 1205 (2010)
  10. Catalan G, Scott JF, Adv. Mater., 21(24), 2463 (2009)
  11. Zheng T, Wu J, J. Mater. Chem. C, 3, 11326 (2015)
  12. Sun Y, Cai W, Gao R, Cao X, Wang F, Lei T, Deng X, Chen G, He H, Fu C, J. Mater. Sci.: Mater. Electron., 28, 12039 (2017)
  13. Woo JW, Baek SB, Song TK, Lee MH, Rahman JU, Kim WJ, Sung YS, Lee S, J. Korean Ceram. Soc., 54, 323 (2017)
  14. Selbach SM, Einarsrud MA, Grande T, Chem. Mater., 21, 169 (2008)
  15. Wang D, Wang G, Murakami S, Fan Z, Feteira A, Zhou D, Sun S, Zhao Q, Reaney IM, J. Adv. Dielectr., 8, 183000 (2018)
  16. Shannon RD, Acta Cryst., A32, 751 (1976)
  17. Das R, Mandal K, J. Magn. Magn. Mater., 324, 1913 (2012)
  18. Jung YI, Choi SY, Kang SJL, Acta Mater., 54, 2849 (2006)